Source code for artiq.coredevice.suservo

from math import ceil, log2

from artiq.language.core import kernel, delay, delay_mu, portable
from artiq.language.types import TFloat, TInt32, TTuple
from artiq.language.units import us, ns
from artiq.coredevice.rtio import rtio_output, rtio_input_data
from artiq.coredevice import spi2 as spi
from artiq.coredevice import ad9910, urukul, sampler


COEFF_WIDTH = 18
Y_FULL_SCALE_MU = (1 << (COEFF_WIDTH - 1)) - 1
T_CYCLE = (2*(8 + 64) + 2)*8*ns  # Must match gateware Servo.t_cycle.
COEFF_SHIFT = 11
PROFILE_WIDTH = 5


[docs] @portable def y_mu_to_full_scale(y): """Convert servo Y data from machine units to units of full scale.""" return y / Y_FULL_SCALE_MU
[docs] @portable def adc_mu_to_volts(x, gain, corrected_fs=True): """Convert servo ADC data from machine units to volts.""" val = (x >> 1) & 0xffff mask = 1 << 15 val = -(val & mask) + (val & ~mask) return sampler.adc_mu_to_volt(val, gain, corrected_fs)
[docs] class SUServo: """Sampler-Urukul Servo parent and configuration device. Sampler-Urukul Servo is a integrated device controlling one 8-channel ADC (Sampler) and two 4-channel DDS (Urukuls) with a DSP engine connecting the ADC data and the DDS output amplitudes to enable feedback. SU Servo can for example be used to implement intensity stabilization of laser beams with an amplifier and AOM driven by Urukul and a photodetector connected to Sampler. Additionally SU Servo supports multiple preconfigured profiles per channel and features like automatic integrator hold. Notes: * See the SU Servo variant of the Kasli target for an example of how to connect the gateware and the devices. Sampler and each Urukul need two EEM connections. * Ensure that both Urukuls are AD9910 variants and have the on-board dip switches set to 1100 (first two on, last two off). * Refer to the Sampler and Urukul documentation and the SU Servo example device database for runtime configuration of the devices (PLLs, gains, clock routing etc.) :param channel: RTIO channel number :param pgia_device: Name of the Sampler PGIA gain setting SPI bus :param cpld_devices: Names of the Urukul CPLD SPI buses :param dds_devices: Names of the AD9910 devices :param gains: Initial value for PGIA gains shift register (default: 0x0000). Knowledge of this state is not transferred between experiments. :param sampler_hw_rev: Sampler's revision string :param core_device: Core device name """ kernel_invariants = {"channel", "core", "pgia", "cplds", "ddses", "ref_period_mu", "corrected_fs", "io_dly_width", "we", "state_sel", "num_channels", "config_addr"} def __init__(self, dmgr, channel, pgia_device, cpld_devices, dds_devices, gains=0x0000, sampler_hw_rev="v2.2", core_device="core"): self.core = dmgr.get(core_device) self.pgia = dmgr.get(pgia_device) self.pgia.update_xfer_duration_mu(div=4, length=16) assert len(dds_devices) == len(cpld_devices) self.ddses = [dmgr.get(dds) for dds in dds_devices] self.cplds = [dmgr.get(cpld) for cpld in cpld_devices] self.channel = channel self.gains = gains self.ref_period_mu = self.core.seconds_to_mu( self.core.coarse_ref_period) self.corrected_fs = sampler.Sampler.use_corrected_fs(sampler_hw_rev) assert self.ref_period_mu == self.core.ref_multiplier io_dly_width = log2(self.core.ref_multiplier) assert io_dly_width.is_integer() self.io_dly_width = int(io_dly_width) self.num_channels = 4 * len(dds_devices) channel_adr_width = ceil(log2(self.num_channels)) # (1 << 2) memory addresses for each channel profile # Each memory slot addresses (1 << 1) coefficients through granularity coeff_adr_width = PROFILE_WIDTH + channel_adr_width + 3 coeff_depth = 10 + (len(cpld_devices) - 1).bit_length() self.we = 1 << coeff_depth + 2 self.phase_sel = 1 << coeff_depth + 1 self.state_sel = 1 << coeff_depth self.word_sel = 1 << coeff_depth config_sel = 1 << coeff_depth - 1 self.config_addr = self.state_sel | config_sel @staticmethod def get_rtio_channels(channel, **kwargs): return [(channel, None)]
[docs] @kernel def init(self): """Initialize the servo, Sampler and both Urukuls. Leaves the servo disabled (see :meth:`set_config`), resets and configures all DDS. On protocol revision 8 Urukuls, initialization is performed blindly as there is no readback from the DDS or the CPLDs. Presence detection via readback is performed on protocol revision 9 Urukuls. This method does not alter the profile configuration memory or the channel controls. """ self.set_config(enable=0) delay(3*us) # pipeline flush self.pgia.set_config_mu( sampler.SPI_CONFIG | spi.SPI_END, 16, 4, sampler.SPI_CS_PGIA) io_update_delays = [ 0 for _ in self.cplds ] for i in range(len(self.cplds)): cpld = self.cplds[i] dds = self.ddses[i] use_miso = cpld.proto_rev == urukul.STA_PROTO_REV_9 cpld.init(blind=not use_miso) prev_cpld_cfg = int64(cpld.cfg_reg) dds.init(blind=not use_miso) cpld.cfg_write(prev_cpld_cfg) io_update_delays[i] = dds.sync_data.io_update_delay self.set_config(enable=0, write_delay=True, io_update_delays=io_update_delays)
[docs] @kernel def write(self, addr, value): """Write to servo memory. This method advances the timeline by one coarse RTIO cycle. :param addr: Memory location address. :param value: Data to be written. """ addr |= self.we value &= (1 << COEFF_WIDTH) - 1 value |= (addr >> 8) << COEFF_WIDTH addr = addr & 0xff rtio_output((self.channel << 8) | addr, value) delay_mu(self.ref_period_mu)
[docs] @kernel def read(self, addr): """Read from servo memory. This method does not advance the timeline but consumes all slack. :param addr: Memory location address. """ value = (addr >> 8) << COEFF_WIDTH addr = addr & 0xff rtio_output((self.channel << 8) | addr, value) return rtio_input_data(self.channel)
[docs] @kernel def set_config(self, enable, write_delay=False, io_update_delays=[0]): """Set SU Servo configuration. This method advances the timeline by one servo memory access. It does not support RTIO event replacement. :param int enable: Enable servo operation. Enabling starts servo iterations beginning with the ADC sampling stage. The first DDS update will happen about two servo cycles (~2.3 µs) after enabling the servo. The delay is deterministic. This also provides a mean for synchronization of servo updates to other RTIO activity. Disabling takes up to two servo cycles (~2.3 µs) to clear the processing pipeline. :param bool write_delay: Write enable for IO_UPDATE delays. :param list io_update_delays: List of IO_UPDATE delays for each Urukul. Requires enabling synchronization to configure. """ value = enable if write_delay: value |= (1 << 1) for i in range(len(io_update_delays)): value |= (io_update_delays[i] << (i * self.io_dly_width + 2)) self.write(self.config_addr, value)
[docs] @kernel def get_status(self): """Get current SU Servo status. This method does not advance the timeline but consumes all slack. The ``done`` bit indicates that a SU Servo cycle has completed. It is pulsed for one RTIO cycle every SU Servo cycle and asserted continuously when the servo is not ``enabled`` and the pipeline has drained (the last DDS update is done). This method returns and clears the clip indicator for all channels. An asserted clip indicator corresponds to the servo having encountered an input signal on an active channel that would have resulted in the IIR state exceeding the output range. :return: Status. Bit 0: enabled, bit 1: done, bits 8-15: channel clip indicators. """ return self.read(self.config_addr)
[docs] @kernel def get_adc_mu(self, adc): """Get the latest ADC reading (IIR filter input X0) in machine units. This method does not advance the timeline but consumes all slack. If reading servo state through this method collides with the servo writing that same data, the data can become invalid. To ensure consistent and valid data, stop the servo before using this method. :param adc: ADC channel number (0-7) :return: 17-bit signed X0 """ # State memory entries are 25 bits. Due to the pre-adder dynamic # range, X0/X1/OFFSET are only 24 bits. Finally, the RTIO interface # only returns the 18 MSBs (the width of the coefficient memory). return self.read(self.state_sel | ((adc << 1) + (self.num_channels << PROFILE_WIDTH)))
[docs] @kernel def set_pgia_mu(self, channel, gain): """Set instrumentation amplifier gain of a ADC channel. The four gain settings (0, 1, 2, 3) corresponds to gains of (1, 10, 100, 1000) respectively. :param channel: Channel index :param gain: Gain setting """ gains = self.gains gains &= ~(0b11 << (channel*2)) gains |= gain << (channel*2) self.pgia.write(gains << 16) self.gains = gains
[docs] @kernel def get_adc(self, channel): """Get the latest ADC reading (IIR filter input X0). This method does not advance the timeline but consumes all slack. If reading servo state through this method collides with the servo writing that same data, the data can become invalid. To ensure consistent and valid data, stop the servo before using this method. The PGIA gain setting must be known prior to using this method, either by setting the gain (:meth:`set_pgia_mu`) or by supplying it (:attr:`gains` or via the constructor/device database). :param adc: ADC channel number (0-7) :return: ADC voltage """ val = self.get_adc_mu(channel) gain = (self.gains >> (channel*2)) & 0b11 return adc_mu_to_volts(val, gain, self.corrected_fs)
[docs] @kernel def clear_dds_phase_accumulator(self): """Clear all DDS phase accumulators. This method clears the phase accumulator by enabling autoclear, and setting the FTW of all the DDS single-tone profiles to 0. SU-Servo is assumed to be disabled with its pipeline drained before invoking this method. """ self.core.break_realtime() num_of_urukuls = len(self.cplds) for i in range(num_of_urukuls): cpld = self.cplds[i] dds = self.ddses[i]._inner_dds cpld.cfg_mask_nu_all(0xf) dds.set_cfr1(phase_autoclear=1) dds.write64(ad9910._AD9910_REG_PROFILE0 + urukul.DEFAULT_PROFILE, 0, 0) cpld.cfg_io_update_all(0xf) cpld.cfg_io_update_all(0) dds.set_cfr1(phase_autoclear=0) cpld.cfg_io_update_all(0xf) cpld.cfg_io_update_all(0) cpld.cfg_mask_nu_all(0)
[docs] class Channel: """Sampler-Urukul Servo channel :param channel: RTIO channel number :param servo_device: Name of the parent SUServo device """ kernel_invariants = {"channel", "core", "servo", "servo_channel"} def __init__(self, dmgr, channel, servo_device): self.servo = dmgr.get(servo_device) self.core = self.servo.core self.channel = channel # This assumes the mem channel is right after the control channels # Make sure this is always the case in eem.py self.servo_channel = (self.channel + self.servo.num_channels - self.servo.channel) self.dds = self.servo.ddses[self.servo_channel // 4] @staticmethod def get_rtio_channels(channel, **kwargs): return [(channel, None)]
[docs] @kernel def set(self, en_out, en_iir=0, en_pt=0, profile=0): """Operate channel. This method does not advance the timeline. Output RF switch setting takes effect immediately and is independent of any other activity (profile settings, other channels). The RF switch behaves like :class:`artiq.coredevice.ttl.TTLOut`. RTIO event replacement is supported. IIR updates take place once the RF switch has been enabled for the configured delay and the profile setting has been stable. Profile changes take between one and two servo cycles to reach the DDS. :param en_out: RF switch enable :param en_iir: IIR updates enable :param en_pt: Phase tracking enable :param profile: Active profile (0-31) """ rtio_output(self.channel << 8, en_out | (en_iir << 1) | (en_pt << 2) | (profile << 3))
[docs] @kernel def set_reference_time(self, profile, fiducial_mu): """Set reference time for "coherent phase mode" (see :meth:`~artiq.coredevice.ad9910.AD9910.set`). Fiducial time stamp refers to the variable `T` in phase tracking mode equation. See :meth:`artiq.coredevice.ad9910.AD9910.set_phase_mode`. Fiducial time stamp is defined as 0 immediately after the servo has been enabled. With en_pt=1 (see :meth:`set`), the DDS output phase of this channel will refer to this fiducial time stamp. This method advances the timeline by two coarse RTIO cycles. :param profile: Profile number (0-31) :param fiducial_mu: Fiducial time stamp in machine unit """ addr = self.servo.phase_sel | (((self.servo_channel << PROFILE_WIDTH) | profile) << 1) self.servo.write(addr, fiducial_mu & 0xffff) self.servo.write(addr + 1, fiducial_mu >> 16)
[docs] @kernel def copy_reference_time(self, profile): """Copy the reference time of the specified profile from the internal time stamp accumulator in real time. Fiducial time stamp refers to the variable `T` in phase tracking mode equation. See :meth:`artiq.coredevice.ad9910.AD9910.set_phase_mode`. Fiducial time stamp is defined as 0 immediately after the servo has been enabled. With en_pt=1 (see :meth:`set`), the DDS output phase of this channel will refer to this copied fiducial time stamp. The coarse part of the time stamp is sourced from the internal time stamp accumulator of the servo. The accumulator only updates every coarse RTIO cycle. The fine part of the time stamp is provided by the corresponding part of the timeline cursor. This method advances the timeline by one coarse RTIO cycle. :param profile: Profile number (0-31) """ addr = self.servo.phase_sel | self.servo.word_sel | (((self.servo_channel << PROFILE_WIDTH) | profile) << 1) self.servo.write(addr, 0)
[docs] @kernel def get_reference_time(self, profile): """Reads the fiducial time stamp of the profile. See :meth:`set_reference_time` regarding the role of fiducial time stamp on phase tracking. :param profile: Profile number (0-31) :return: The fiducial time stamp of the profile """ addr = self.servo.phase_sel | (((self.servo_channel << PROFILE_WIDTH) | profile) << 1) self.core.break_realtime() lo = self.servo.read(addr) self.core.break_realtime() hi = self.servo.read(addr + 1) return (hi << 16) | (lo & 0xffff)
[docs] @kernel def clear_tracked_phase_accumulator(self): """Clears the tracked phase accumulator of this channel. The tracked phase accumulator is an internal register that tracks the corresponding register of the corresponding DDS. To properly track the accumulator of the DDS, both accumulators should be cleared before enabling the servo. This method advances the timeline by two coarse RTIO cycles. .. seealso:: The accumulator of the DDS can be cleared by :meth:`~artiq.coredevice.suservo.SUServo.clear_dds_phase_accumulator` """ addr = self.servo.phase_sel | (((1 << PROFILE_WIDTH) * self.servo.num_channels + (self.servo_channel << 1) | 1) << 1) self.servo.write(addr, 0) self.servo.write(addr + 1, 0)
[docs] @kernel def get_tracked_phase_accumulator(self): """Reads the tracked phase accumulator of this channel. The tracked phase accumulator is an internal register that tracks the corresponding register of the corresponding DDS. Both registers are expected to update in real time. Since this is a two-part read, there might be word tearing. Either disabling the servo, or setting the frequency tuning word (FTW) to 0, will avoid this word tearing issue. :return: The internally tracked phase accumulator """ addr = self.servo.phase_sel | (((1 << PROFILE_WIDTH) * self.servo.num_channels + (self.servo_channel << 1) | 1) << 1) self.core.break_realtime() lo = self.servo.read(addr) self.core.break_realtime() hi = self.servo.read(addr + 1) return (hi << 16) | (lo & 0xffff)
[docs] @kernel def clear_tracked_ftw(self): """Clears the tracked frequency tuning word (FTW) of this channel. The FTW on the DDS should be cleared before enabling the servo. This method advances the timeline by two coarse RTIO cycles. """ addr = self.servo.phase_sel | (((1 << PROFILE_WIDTH) * self.servo.num_channels + (self.servo_channel << 1) | 0) << 1) self.servo.write(addr, 0) self.servo.write(addr + 1, 0)
[docs] @kernel def get_tracked_ftw(self): """Reads the tracked frequency tuning word (FTW) of this channel. :return: The internally tracked FTW """ addr = self.servo.phase_sel | (((1 << PROFILE_WIDTH) * self.servo.num_channels + (self.servo_channel << 1) | 0) << 1) self.core.break_realtime() lo = self.servo.read(addr) self.core.break_realtime() hi = self.servo.read(addr + 1) return (hi << 16) | (lo & 0xffff)
[docs] @kernel def set_dds_mu(self, profile, ftw, offs, pow_=0): """Set profile DDS coefficients in machine units. See also :meth:`Channel.set_dds`. :param profile: Profile number (0-31) :param ftw: Frequency tuning word (32-bit unsigned) :param offs: IIR offset (17-bit signed) :param pow_: Phase offset word (16-bit) """ base = ((self.servo_channel << PROFILE_WIDTH) | profile) << 3 self.servo.write(base + 6, ftw >> 16) self.servo.write(base + 2, (ftw & 0xffff)) self.set_dds_offset_mu(profile, offs) self.servo.write(base, pow_)
[docs] @kernel def set_dds(self, profile, frequency, offset, phase=0.): """Set profile DDS coefficients. This method advances the timeline by four servo memory accesses. Profile parameter changes are not synchronized. Activate a different profile or stop the servo to ensure synchronous changes. :param profile: Profile number (0-31) :param frequency: DDS frequency in Hz :param offset: IIR offset (negative setpoint) in units of full scale, see :meth:`dds_offset_to_mu` :param phase: DDS phase in turns """ ftw = self.dds.frequency_to_ftw(frequency) pow_ = self.dds.turns_to_pow(phase) offs = self.dds_offset_to_mu(offset) self.set_dds_mu(profile, ftw, offs, pow_)
[docs] @kernel def set_dds_offset_mu(self, profile, offs): """Set only IIR offset in DDS coefficient profile. See :meth:`set_dds_mu` for setting the complete DDS profile. :param profile: Profile number (0-31) :param offs: IIR offset (17-bit signed) """ base = ((self.servo_channel << PROFILE_WIDTH) | profile) << 3 self.servo.write(base + 4, offs)
[docs] @kernel def set_dds_offset(self, profile, offset): """Set only IIR offset in DDS coefficient profile. See :meth:`set_dds` for setting the complete DDS profile. :param profile: Profile number (0-31) :param offset: IIR offset (negative setpoint) in units of full scale """ self.set_dds_offset_mu(profile, self.dds_offset_to_mu(offset))
[docs] @portable def dds_offset_to_mu(self, offset): """Convert IIR offset (negative setpoint) from units of full scale to machine units (see :meth:`set_dds_mu`, :meth:`set_dds_offset_mu`). For positive ADC voltages as setpoints, this should be negative. Due to rounding and representation as two's complement, ``offset=1`` can not be represented while ``offset=-1`` can. """ return int(round(offset * (1 << COEFF_WIDTH - 1)))
[docs] @kernel def set_iir_mu(self, profile, adc, a1, b0, b1, dly=0): """Set profile IIR coefficients in machine units. The recurrence relation is (all data signed and MSB aligned): .. math:: a_0 y_n = a_1 y_{n - 1} + b_0 (x_n + o)/2 + b_1 (x_{n - 1} + o)/2 Where: * :math:`y_n` and :math:`y_{n-1}` are the current and previous filter outputs, clipped to :math:`[0, 1[`. * :math:`x_n` and :math:`x_{n-1}` are the current and previous filter inputs in :math:`[-1, 1[`. * :math:`o` is the offset * :math:`a_0` is the normalization factor :math:`2^{11}` * :math:`a_1` is the feedback gain * :math:`b_0` and :math:`b_1` are the feedforward gains for the two delays See also :meth:`Channel.set_iir`. :param profile: Profile number (0-31) :param adc: ADC channel to take IIR input from (0-7) :param a1: 18-bit signed A1 coefficient (Y1 coefficient, feedback, integrator gain) :param b0: 18-bit signed B0 coefficient (recent, X0 coefficient, feed forward, proportional gain) :param b1: 18-bit signed B1 coefficient (old, X1 coefficient, feed forward, proportional gain) :param dly: IIR update suppression time. In units of IIR cycles (~1.2 µs, 0-255). """ base = ((self.servo_channel << PROFILE_WIDTH) | profile) << 3 self.servo.write(base + 3, adc | (dly << 8)) self.servo.write(base + 1, b1) self.servo.write(base + 5, a1) self.servo.write(base + 7, b0)
[docs] @kernel def set_iir(self, profile, adc, kp, ki=0., g=0., delay=0.): """Set profile IIR coefficients. This method advances the timeline by four servo memory accesses. Profile parameter changes are not synchronized. Activate a different profile or stop the servo to ensure synchronous changes. Gains are given in units of output full per scale per input full scale. The transfer function is (up to time discretization and coefficient quantization errors): .. math:: H(s) = k_p + \\frac{k_i}{s + \\frac{k_i}{g}} Where: * :math:`s = \\sigma + i\\omega` is the complex frequency * :math:`k_p` is the proportional gain * :math:`k_i` is the integrator gain * :math:`g` is the integrator gain limit :param profile: Profile number (0-31) :param adc: ADC channel to take IIR input from (0-7) :param kp: Proportional gain (1). This is usually negative (closed loop, positive ADC voltage, positive setpoint). When 0, this implements a pure I controller. :param ki: Integrator gain (rad/s). When 0 (the default) this implements a pure P controller. Same sign as ``kp``. :param g: Integrator gain limit (1). When 0 (the default) the integrator gain limit is infinite. Same sign as ``ki``. :param delay: Delay (in seconds, 0-300 µs) before allowing IIR updates after invoking :meth:`set`. This is rounded to the nearest number of servo cycles (~1.2 µs). Since the RF switch (:meth:`set`) can be opened at any time relative to the servo cycle, the first DDS update that carries updated IIR data will occur approximately between ``delay + 1 cycle`` and ``delay + 2 cycles`` after :meth:`set`. """ B_NORM = 1 << COEFF_SHIFT + 1 A_NORM = 1 << COEFF_SHIFT COEFF_MAX = 1 << COEFF_WIDTH - 1 kp *= B_NORM if ki == 0.: # pure P a1 = 0 b1 = 0 b0 = int(round(kp)) else: # I or PI ki *= B_NORM*T_CYCLE/2. if g == 0.: c = 1. a1 = A_NORM else: c = 1./(1. + ki/(g*B_NORM)) a1 = int(round((2.*c - 1.)*A_NORM)) b0 = int(round(kp + ki*c)) b1 = int(round(kp + (ki - 2.*kp)*c)) if b1 == -b0: raise ValueError("low integrator gain and/or gain limit") if (b0 >= COEFF_MAX or b0 < -COEFF_MAX or b1 >= COEFF_MAX or b1 < -COEFF_MAX): raise ValueError("high gains") dly = int(round(delay/T_CYCLE)) self.set_iir_mu(profile, adc, a1, b0, b1, dly)
[docs] @kernel def get_profile_mu(self, profile, data): """Retrieve profile data. Profile data is returned in the ``data`` argument in machine units packed as: ``[pow, b1, ftw & 0xffff, adc | (delay << 8), offset, a1, ftw >> 16, b0]``. .. seealso:: The individual fields are described in :meth:`set_iir_mu` and :meth:`set_dds_mu`. This method advances the timeline by 32 µs and consumes all slack. :param profile: Profile number (0-31) :param data: List of 8 integers to write the profile data into """ base = ((self.servo_channel << PROFILE_WIDTH) | profile) << 3 for i in range(len(data)): data[i] = self.servo.read(base + i) delay(4*us)
[docs] @kernel def get_y_mu(self, profile): """Get a profile's IIR state (filter output, Y0) in machine units. The IIR state is also known as the "integrator", or the DDS amplitude scale factor. It is 17 bits wide and unsigned. This method does not advance the timeline but consumes all slack. If reading servo state through this method collides with the servo writing that same data, the data can become invalid. To ensure consistent and valid data, stop the servo before using this method. :param profile: Profile number (0-31) :return: 17-bit unsigned Y0 """ return self.servo.read(self.servo.state_sel | (self.servo_channel << PROFILE_WIDTH) | profile)
[docs] @kernel def get_y(self, profile): """Get a profile's IIR state (filter output, Y0). The IIR state is also known as the "integrator", or the DDS amplitude scale factor. It is 17 bits wide and unsigned. This method does not advance the timeline but consumes all slack. If reading servo state through this method collides with the servo writing that same data, the data can become invalid. To ensure consistent and valid data, stop the servo before using this method. :param profile: Profile number (0-31) :return: IIR filter output in Y0 units of full scale """ return y_mu_to_full_scale(self.get_y_mu(profile))
[docs] @kernel def set_y_mu(self, profile, y): """Set a profile's IIR state (filter output, Y0) in machine units. The IIR state is also known as the "integrator", or the DDS amplitude scale factor. It is 17 bits wide and unsigned. This method must not be used when the servo could be writing to the same location. Either deactivate the profile, or deactivate IIR updates, or disable servo iterations. This method advances the timeline by one servo memory access. :param profile: Profile number (0-31) :param y: 17-bit unsigned Y0 """ # State memory is 25 bits wide and signed. # Reads interact with the 18 MSBs (coefficient memory width) self.servo.write(self.servo.state_sel | (self.servo_channel << PROFILE_WIDTH) | profile, y)
[docs] @kernel def set_y(self, profile, y): """Set a profile's IIR state (filter output, Y0). The IIR state is also known as the "integrator", or the DDS amplitude scale factor. It is 17 bits wide and unsigned. This method must not be used when the servo could be writing to the same location. Either deactivate the profile, or deactivate IIR updates, or disable servo iterations. This method advances the timeline by one servo memory access. :param profile: Profile number (0-31) :param y: IIR state in units of full scale """ y_mu = int(round(y * Y_FULL_SCALE_MU)) if y_mu < 0 or y_mu > (1 << 17) - 1: raise ValueError("Invalid SUServo y-value!") self.set_y_mu(profile, y_mu) return y_mu
class _MaskedIOUpdate: def __init__(self, core, cpld, dds, io_update): self.cpld = cpld self.dds = dds self.core = core self.io_update = io_update # Synchronized SU-Servo uses the designated I/O update pin. # When communicating with the DDS via slow SPI, MASK_NU must be set to # perform serial transfer, then unset to propagate I/O update. self.toggle_mask_nu = self.cpld.io_update is not None @kernel def aligned_write_cfg_mask_nu(self, state): """Write NU_MASK of CFG at a coarse RTIO clock cycle. It aligns the time cursor to the next coarse time stamp, write NU_MASK to the Urukul CFG, then restore the initial fine time stamp. This method advances the time cursor by a CFG write duration, plus 1 RTIO clock cycle.""" fine_ts = now_mu() & (self.core.ref_multiplier - 1) delay_mu(self.core.ref_multiplier - fine_ts) self.cpld.cfg_mask_nu(self.dds.selected_ch, state) delay_mu(fine_ts) @kernel def pulse_mu(self, duration): """Unset MASK_NU, then pulse the IO Update TTL high for the specified duration (in machine units). MASK_NU is restored to the previous value after the I/O pulse. The I/O update TTL supports fine time stamp. Controlling I/O update through TTL requires Urukul CFG writes, but CFG writes does not support fine time stamps. Hence, a pair of preamble and postamble CFG writes (with coarse clock alignments) are issued to enable I/O updates from TTL temporarily. ``aligned_write_cfg_mask_nu`` implements the preamble/postamble writes. The time cursor is advanced by the sum of: - 2 CFG writes (enable/disable MASK_NU) - 2 coarse RTIO cycles (coarse clock alignment), and - I/O update pulse duration""" toggle_needed = bool((self.cpld.cfg_reg >> (urukul.ProtoRev9.CFG_MASK_NU + self.dds.selected_ch)) & 1) if self.toggle_mask_nu and toggle_needed: self.aligned_write_cfg_mask_nu(False) self.io_update.pulse_mu(duration) if self.toggle_mask_nu and toggle_needed: self.aligned_write_cfg_mask_nu(True) @kernel def pulse(self, duration): """Pulse the output high for the specified duration (in seconds). See pulse_mu.""" toggle_needed = bool((self.cpld.cfg_reg >> (urukul.ProtoRev9.CFG_MASK_NU + self.dds.selected_ch)) & 1) if self.toggle_mask_nu and toggle_needed: self.aligned_write_cfg_mask_nu(False) self.io_update.pulse(duration) if self.toggle_mask_nu and toggle_needed: self.aligned_write_cfg_mask_nu(True) class SyncDataUser: def __init__(self, core, sync_delay_seeds, io_update_delay): self.core = core self.sync_delay_seeds = sync_delay_seeds self.io_update_delay = io_update_delay @kernel def init(self): pass class SyncDataEeprom: def __init__(self, dmgr, core, eeprom_str): self.core = core eeprom_device, eeprom_offset = eeprom_str.split(":") self.eeprom_device = dmgr.get(eeprom_device) self.eeprom_offset = int(eeprom_offset) self.sync_delay_seeds = [0] * 4 self.io_update_delay = 0 @kernel def init(self): word = self.eeprom_device.read_i32(self.eeprom_offset) for i in range(len(self.sync_delay_seeds)): self.sync_delay_seeds[i] = (word >> (i * 5)) & 0x1F io_update_delay = (word >> 20) & 0xFFF if io_update_delay == 0xFFF: # unprogrammed EEPROM self.io_update_delay = 0 else: self.io_update_delay = int32(io_update_delay)
[docs] class SharedDDS: """DDS configuration device for SU-Servo. Shared DDS device controls all 4 DDSes on the same Urukul device. Control of the 4 channels is multiplexed by selecting the corresponding MASK_NU bit prior to SPI transaction. IO_UPDATE is transferred by temporarily disabling the corresponding MASK_NU bit. :param cpld_device: Name of the Urukul CPLD this device is on. :param pll_n: DDS PLL multiplier. The DDS sample clock is ``f_ref / clk_div * pll_n`` where ``f_ref`` is the reference frequency and ``clk_div`` is the reference clock divider (both set in the parent Urukul CPLD instance). :param pll_en: PLL enable bit, set to 0 to bypass PLL (default: 1). Note that when bypassing the PLL the red front panel LED may remain on. :param pll_cp: DDS PLL charge pump setting. :param pll_vco: DDS PLL VCO range selection. :param sync_delay_seeds: ``SYNC_IN`` delays tuning starting value. To stabilize the ``SYNC_IN`` delays tuning, run :meth:`tune_sync_delays` once and set this to the delay tap number returned (default: [-1, -1, -1, -1] to signal no synchronization and no tuning during :meth:`init`). Can be a string of the form ``eeprom_device:byte_offset`` to read the value from a I2C EEPROM, in which case ``io_update_delay`` must be set to the same string value. :param io_update_delay: ``IO_UPDATE`` pulse alignment delay. To align ``IO_UPDATE`` to ``SYNC_CLK``, run :meth:`tune_io_update_group_delay` and set this to the delay tap number returned. Can be a string of the form ``eeprom_device:byte_offset`` to read the value from a I2C EEPROM, in which case ``sync_delay_seeds`` must be set to the same string value. :param core_device: Core device name """ def __init__(self, dmgr, cpld_device, pll_n=40, pll_cp=7, pll_vco=5, sync_delay_seeds=[-1, -1, -1, -1], io_update_delay=0, pll_en=1, core_device="core"): self.core = dmgr.get(core_device) self.cpld = dmgr.get(cpld_device) self._inner_dds = ad9910.AD9910(dmgr, 3, cpld_device, pll_n=pll_n, pll_cp=pll_cp, pll_vco=pll_vco, pll_en=pll_en) self.selected_ch = 0 self._inner_dds.io_update = _MaskedIOUpdate(self.core, self._inner_dds.cpld, self, self._inner_dds.io_update) if isinstance(sync_delay_seeds, str) or isinstance(io_update_delay, str): if sync_delay_seeds != io_update_delay: raise ValueError("When using EEPROM, sync_delay_seeds must be " "equal to io_update_delay") self.sync_data = SyncDataEeprom(dmgr, self.core, sync_delay_seeds) else: self.sync_data = SyncDataUser(self.core, sync_delay_seeds, io_update_delay)
[docs] @portable def update_dds_sel(self, channel): """Select a specific DDS channel to accept I/O update""" self.cpld.cfg_mask_nu_all(1 << channel) self.selected_ch = channel
[docs] @kernel def init(self, blind=False): """Initialize and configure the SU-Servo as a whole. See the :meth:`~artiq.coredevice.ad9910.AD9910.init` method of :class:`~artiq.coredevice.ad9910.AD9910` for AD9910 initialization. :param blind: Do not read back DDS identity and do not wait for lock. See :meth:`~artiq.coredevice.ad9910.AD9910.init`. """ self.core.break_realtime() self.sync_data.init() for i in range(4): self.core.break_realtime() self.update_dds_sel(i) self.core.break_realtime() self._inner_dds.init(blind=blind, dds_channel_idx=i) if self.sync_data.sync_delay_seeds != [-1, -1, -1, -1]: self._inner_dds.tune_sync_delay(self.sync_data.sync_delay_seeds[i], dds_channel_idx=i) # Disable MASK_NU to resume QSPI self.cpld.cfg_mask_nu_all(0)
[docs] @kernel def tune_sync_delays(self) -> TTuple([TInt32, TInt32, TInt32, TInt32]): """Find a set of stable ``SYNC_IN`` delays. This method first locates a set of ``SYNC_IN`` delays via :meth:`~artiq.coredevice.ad9910.AD9910.tune_sync_delay` of :class:`~artiq.coredevice.ad9910.AD9910`. This method and :meth:`tune_io_update_group_delay` can be run in any order. :return: Tuple of optimal delays. """ def get_delay(ch) -> TInt32: self.core.break_realtime() self.update_dds_sel(ch) self.core.break_realtime() dly, _ = self._inner_dds.tune_sync_delay(dds_channel_idx=ch) return dly return get_delay(0), get_delay(1), get_delay(2), get_delay(3)
[docs] @kernel def tune_io_update_group_delay(self) -> TInt32: """Find a stable ``IO_UPDATE`` delay alignment suitable for all DDS channels. Scan through increasing ``IO_UPDATE`` delays until a delay is found that lets ``IO_UPDATE`` be registered in the next ``SYNC_CLK`` cycle. Return an ``IO_UPDATE`` delay that does not coincide with any ``SYNC_CLK`` edges. This method assumes that the ``IO_UPDATE`` TTLOut device has one machine unit resolution (SERDES). This method and :meth:`tune_sync_delays` can be run in any order. :return: ``IO_UPDATE`` delay to be passed to the constructor :class:`~artiq.coredevice.urukul.CPLD` via the device database. """ period = self._inner_dds.sysclk_per_mu * 4 # SYNC_CLK period sync_clk_offset = [ 0 for _ in range(period) ] repeat = 100 for channel in range(4): self.update_dds_sel(channel) for i in range(period): t = 0 # check whether the sync edge is strictly between i, i+2 for j in range(repeat): t += self._inner_dds.measure_io_update_alignment(int64(i), i + 2) if t != 0: # no certain edge continue # check left/right half: i,i+1 and i+1,i+2 t1 = [0, 0] for j in range(repeat): t1[0] += self._inner_dds.measure_io_update_alignment(int64(i), i + 1) t1[1] += self._inner_dds.measure_io_update_alignment(int64(i + 1), i + 2) if ((t1[0] == 0 and t1[1] == 0) or (t1[0] == repeat and t1[1] == repeat)): # edge is not close to i + 1, can't interpret result raise ValueError( "no clear IO_UPDATE-SYNC_CLK alignment edge found") else: sync_clk_offset[(i + 1) % period] += 1 break # Find an offset that isn't aligned by SYNC_CLK for i in range(period): if sync_clk_offset[i] == 0: return i raise ValueError("IO_UPDATE-SYNC_CLK alignment edges are too broad")
[docs] @portable def frequency_to_ftw(self, frequency: TFloat) -> TInt32: """Return the 32-bit frequency tuning word corresponding to the given frequency.""" return self._inner_dds.frequency_to_ftw(frequency)
[docs] @portable def turns_to_pow(self, turns: TFloat) -> TInt32: """Return the 16-bit phase offset word corresponding to the given phase in turns.""" return self._inner_dds.turns_to_pow(turns)