
b
er

lin

electronics
and medical

signal processing

Master-Arbeit

Short Time Fourier Transform Pulse
Generator for Trapped Ion Quantum Gates

erstellt von

Norman Krackow
Matrikel: 399214

Berlin, Februar 2020

Hochschullehrer: Prof. Dr.-Ing. R. Orglmeister, TU Berlin
Betreuer: Dr. Robert Jördens, QUARTIQ GmbH

Alexandru-Gabriel Pielmus, TU Berlin

Technische Universität Berlin, Fachgebiet Elektronik und medizinische Signalverarbeitung
Institut für Energie- und Automatisierungstechnik

Contents

Abbreviations iii

Abstract 1

Zusammenfassung 3

1 Quantum Information Processing 5
1.1 Introduction . 5
1.2 Quantum Logic . 7
1.3 Trapped Ions . 9
1.4 Mølmer-Sørenson Gate . 11
1.5 Existing Hardware Approaches . 13

2 ARTIQ Framework 15
2.1 Instrumentation for Quantum Physics 15
2.2 Sinara . 16
2.3 ARTIQ Overview . 17
2.4 Development Tools . 19

3 STFT Pulse Generator 23
3.1 Phaser hardware . 23
3.2 Description . 25

3.2.1 Abstract . 25
3.2.2 Functional . 25
3.2.3 Interface . 27
3.2.4 Practical Considerations . 28
3.2.5 Specifications . 31

3.3 Signal Processing . 32
3.3.1 FFT . 32
3.3.2 Interpolator . 41
3.3.3 Upconverter . 51

i

Contents

3.4 ARTIQ integration . 53
3.5 Testing . 56

4 Conclusion and Outlook 59

A API Documentation 61

List of Figures 67

List of Tables 71

Bibliography 73

ii

Abbreviations

AOM Acousto-Optic Modulator

API Application Programming Interface

ARTIQ Advanced Real-Time Infrastructure for Quantum physics

AWG Arbitrary Waveform Generator

dBFS dB relative to Full-Scale

BSD Berkeley Source Distribution (license)

CIC Cascaded Integrator Comb

COM Center Of Mass

COTS Commercial-Of-The-Shelf

CPU Central Processing Unit

CSR Control/Status Register

DAC Digital to Analog Converter

DDS Direct Digital Synthesis

DFT Discrete Fourier Transform

DIF Division In Frequency

DIT Division In Time

DMA Direct Memory Access

DSP Digital Signal Processing

Contents

DUC Digital Up-Converter

FIR Finite Impulse Response (filter)

FFT Fast Fourier Transformation

FHDL Functional Hardware Description Language

FPGA Field Programmable Gate Array

FTW Frequency Tuning Word

GUI Graphical User Interface

HBF Half-Band Filter

HDL Hardware Description Language

IC Integrated Circuit

IF Intermediate Frequency

ILA Integrated Logic Analyzer

IO Input/Output

I/Q Inphase/Quadrature

LGPLv3+ GNU Lesser General Public License Version 3+

LSB Least Significant Bit

LUT Look-Up Table

LVDS Low Voltage Differential Signaling

MSps Mega Samples per second

NIST National Institute of Standards and Technology

NCO Numerically Controlled Oscillator

RF Radio Frequency

SOPOT Sum Of Powers Of Two

SED Scalable Event Dispatcher

iv

Contents

SerDes Serializer-Deserializer

SFDR Spurious Free Dynamic Range

SNR Signal to Noise Ratio

SoC System on Chip

STFT Short-Time Fourier Transform

TTL Transistor-Transistor Logic

PCB Printed Circuit Board

PHY Physical Layer

PLL Phase-Locked Loop

POW Phase Offset Word

PTB Physikalisch-Technische Bundesanstalt

RAM Random Access Memory

RTIO Real Time Input/Output

v

Erklärung

Die selbständige und eigenständige Anfertigung versichert an Eides statt.

Berlin, den April 11, 2021

Unterschrift

Danksagung

Der Autor dankt hiermit allen, die durch ihre Unterstätzung zur Entstehung
dieser Arbeit beigetragen haben. Besonderer Dank gilt Herrn Dr. Jördens von
QUARTIQ.

Abstract

Quantum information processing is a rapidly evolving field at the intersection of
physics and computer science. Its goal is to harness the inherent computational
power of quantum mechanics for information processing.

In recent years, arrays of trapped atomic ions have emerged as a vehicle to store and
manipulate quantum information. The information is therein represented as states
in the atomic structure and manipulated by the interaction with electromagnetic
radiation. Due to the natural fragility of quantum information, this interaction
must be mediated in a precisely controlled fashion.

This work presents the development of a device for the generation of signal pulses
for quantum logic gates. The pulse can be specified using a set of configuration
parameters and emitted with nanosecond precision. The Short-Time Fourier
Transform (STFT) is employed as the key concept for signal computation. High
spectral purity and optimal signal to noise ratio are achieved via the use of custom
Digital Signal Processing (DSP) circuits in a Field Programmable Gate Array
(FPGA).

The device was integrated in the Advanced Real-Time Infrastructure for Quantum
physics (ARTIQ) framework used by leading groups in the field.

1

Zusammenfassung

Die Quanteninformatik ist eine rasch fortschreitende Disziplin zwischen Physik und
Informatik. Sie hat zum Ziel, die computationale Stärke der Quantenmechanik zur
Informationsverarbeitung zu nutzen.

In den letzten Jahren haben Anordnungen von gefangenen Ionen gezeigt, dass sie
als Medium zur Speicherung und Verarbeitung von Quanteninformation dienen
können. Hierbei ist die Information durch Zustände in der atomaren Struktur
repräsentiert und kann durch die Interaktion mit elektromagnetischer Strahlung
manipuliert werden. Aufgrund der inhärenten Sensitivität von Quanteninformation
muss diese Interaktion präzise dirigiert werden.

Diese Arbeit präsentiert die Entwicklung eines Geräts zur Erzeugung von Sig-
nalpulsen für logische Quantengatter. Der Puls kann durch einen Satz Kon-
figurationsparameter spezifiziert und mit Nanosekunden-Präzision ausgesendet
werden. Die Kurzzeit-Fouriertansformation (STFT) bildet hierbei das zentrale
Konzept der Signalberechnung. Eine hohe spektrale Reinheit und optimaler Signal-
Rausch-Abstand werden durch maßgeschneiderte Schaltungen der digitalen Sig-
nalverarbeitung (DSP) in einem programmierbaren Logikschaltkreis (FPGA) erre-
icht.

Das Gerät ist in ein weltweit führendes System zur Steuerung von Quantenexperi-
menten, der “Advanced Real-Time Infrastructure for Quantum physics (ARTIQ)”,
integriert.

3

1 Quantum Information Processing

This first chapter addresses a reader without a physics background and gives context
about the reasoning and design decisions that went into developing the STFT pulse
generator. Due to the complexity of the application background, this chapter has
no claim to completeness.

1.1 Introduction

While often perceived as an abstract concept, information always corresponds to the
state of a physical system. This is true for the contents of a computer memory, the
DNA of a living organism or the modulation of electromagnetic radiation coming
from a distant star. So does computation and the time evolution of a physical
system. A classical computer subjects the content of its memory to some logical
function in order to calculate an outcome. Underlying this is a physical process
in which some physical quantity like the flow of electrical current is mediated by
some physical interaction like the dynamics of a transistor.

Starting in the 1980s, physicists wondered if they could simulate physics on a
computer with Richard Feynman recognizing the exponential resource demand of a
classical computer to emulate quantum mechanics [Fey82]. He went on to formulate
the idea of a “Quantum Mechanical Computer”[Fey86], laying out the fundamental
framework and elementary building blocks for such a device. Other theorists followed
suit with David Deutsch defining a Quantum Touring Machine and generalizing
the Church-Turing thesis to physical systems[Deu85]:

“Every finitely realizable physical system can be perfectly simulated by
a universal model computing machine operating by finite means.”

5

1 Quantum Information Processing

Bernstein and Vazirani [BV97] subsequently went a step further, theorizing that a
universal computing machine would be able to efficiently1 simulate any other phys-
ical system, sometimes called the strong Church-Turing thesis.

It is currently unknown whether the (strong) Church-Turing thesis is true for a
quantum computer. While fundamental problems arise with general relativity,
recent works by John Preskill suggests that universal quantum computers can
efficiently simulate quantum field theories and probably the full standard model of
particle physics[Pre18]. Interestingly, although conjectured by information theorists,
it is yet to be proven that a quantum computer is strictly more powerful than a
probabilistic classical computer.

While still an open debate, quantum information theory has given rise to actual
quantum algorithms with superior performance to known classical algorithms
(Shor[Sho99], Grover[Gro96], etc.) as well as fundamentally secure communica-
tions (quantum teleportation[Ben+93], BB84[BB20]). Since technologies capable
of performing those schemes would be very disruptive for many of today’s com-
munication and crptography systems, there has been considerable interest from
government agencies, funding much of the early experimental work on quantum
computers and quantum communications. While secure quantum communication
has been demonstrated over large distances [Lia+17], a quantum computer capable
of executing Shor’s or Grover’s algorithm on technologically relevant scales does
not yet exist.

However, experimentalists have made considerable progress towards realizing bigger
and better quantum systems with programmable dynamics. A number of competing
platforms and systems have emerged with a growing number of researchers making
progress on each. Since the STFT pulse generator presented in this work is
intended for use with trapped ions, only this platform will be discussed in section
1.3.

Today quantum computers, communications and metrology are often aggregated
to the term quantum technologies. With rising public and private investments,

1Efficiently in this context refers to a polynomial increase in computing resources for a polyno-
mially increased problem size.

6

1.2 Quantum Logic

the field is transitioning from laboratory to industrial scale. There are a fast-
growing number of companies with many specializing in different aspects of the
technology “stack”. In 2020, the German government pledged investments of
2 · 109€ for quantum technologies in conjunction with the “Konjunktur- und
Krisenbewältigungspaket”[Bun20] and an industry consortium has framed a German
“Quantum Roadmap”[Gmb21].

1.2 Quantum Logic

Quantum information processing is usually described using the quantum circuit
model. In a similar way to classical logic circuits, inputs are subjected to a number
of logic gates, altering their states and producing an output. While a classical
computer works with bits, the fundamental unit of information in a quantum
computer is a qubit. Unlike a classical bit, which can be in one of two states, a
qubit can be in any superposition of two states. However, the state of a qubit can
not be directly observed. Instead one needs to perform a measurement on the qubit,
collapsing it into one of two basis states. Basis states are states in which the qubit
can be observed to be in. Therefore every quantum algorithm always ends with a
measurement, revealing the outcome of the computation.

The other fundamentally different concept in quantum computing is entanglement.
While the state of a classical system is fully described by describing each element
individually, this is not the case for a quantum system, where the state of a system
can only be fully described as a whole, incorporating mutually shared information.
The consequence is, that the amount of information contained in a system rises
exponentially with a linear increase in size. Furthermore, the state of an entangled
quantum system can only be changed globally, with operations on each individual
qubit affecting the global state.

A quantum circuit can exploit these quantum phenomena by applying quantum
logic gates. A single qubit logic gate can manipulate the state of a single qubit, for
example taking it from a basis state into a superposition state. A multi qubit logic
gate can take a number of qubits into or out of a state of entanglement.

7

1 Quantum Information Processing

Figure 1.1: Exemplary quantum circuit[yao] that generates a highly entangled
state between 4 qubits (before the measurement). After state
preparation on the very left, single and two qubit gates are applied,
followed by a measurement at the end which reveals the final
quantum state. In this circuit the qubits will have a 50/50 chance
to all be 1 or all be 0, an outcome not possible with classical logic.

By exploiting both of those properties, it is possible to find algorithms with better
performance than known classical algorithms[Sho99][Gro96].

For entanglement and superposition to be conserved, the system must not interact
with the outside during computation. Unfortunately, since a real system is never
completely isolated from the outside2, real qubits and quantum gates are hard to
realize. The time a real qubit can retain its quantum information is called the
qubit coherence time, with the best platforms now achieving many seconds or even
minutes. The other defining metric is the gate fidelity which gives the probability
of successfully applying the gate. Current records are around 99.999% for single
qubit gates and 99.99%[Gae+16] for two qubit gates.

While these values are not sufficient to successfully perform big computations
natively, the concept of quantum error correction gives hope that complex algorithms

2At least not when it is programmable from outside.

8

1.3 Trapped Ions

can be performed on noisy computers by distributing the information involved
in the computation in the entanglement between the real qubits. However, while
theoretically possible, quantum error correction comes with a big increase in system
size for systems with subpar gate fidelity. As of today, a fully error corrected
(“logical”) qubit has not yet been realized.

1.3 Trapped Ions

Compared to other platforms such as superconducting, solid-state or optical qubits,
trapped ion qubits currently show the best coherence times[Wan+17], single qubit
and two qubit gate fidelity[Gae+16] and benefit from all-to-all connectivity. All-
to-all refers to the fact, that multi qubit gates can be performed in arbitrary
constellations, which is not possible on other systems. Furthermore, qubit initial-
ization and readout can be performed with near perfect accuracy in a trapped ion
system. On the other hand, other platforms are often simpler to operate, whereas
trapped ion setups demand precision lasers and optics.

In many trapped ion systems a qubit is represented by a hyperfine electronic
transition in the atomic structure. Hyperfine transitions are small transitions
within an electron orbital that arise from electron-nucleus interactions. A number
of individual ions are trapped in a vacuum via static and oscillating electric fields3.
In modern traps, the electrodes are arranged in 2D on a microfabricated chip with
the ions forming a linear array above the chip. The linear arrangement stems from
the trapping fields asserting strong confinement in two spatial dimension and weak
confinement in the third. The charged ions also repel one another and therefore
form an ion crystal with coupled motion between the ions.

To control their motion, the ions are first cooled to nanokelvin levels using various
“laser cooling” techniques. Laser cooling uses the fact that the interaction of
atomic states can be dependent on the ions motion4. Using this property, ions can

3The invention of the paul ion trap in the 1950s in Bonn was awarded with a Nobel Prize for
Wolfgang Paul.

4Also awarded with a Nobel Prize for Steven Chu, Claude Cohen-Tannoudji and William D.
Phillips in 1997.

9

1 Quantum Information Processing

Figure 1.2: Ion trap fabricated at the “Physikalisch-Technische Bundesanstalt”
(PTB) Braunschweig[Bra]. The inset shows arrays of fluorescing
beryllium ions.

even be cooled to their motional ground state. The qubits are initialized using
“optical pumping”, where the electron is first excited into a high energy state which
then coherently decays into the qubit ground state. Readout of the qubit state is
achieved via fluorescence, where the electron is continuously excited into a higher
energy level, quickly decaying back to the original level, emitting a photon. If the
ion is prepared by a process called “shelving”, it will only fluoresce if the qubit was
in the ground state5.

Once the qubit is initialized, arbitrary single qubit gates can be applied by illumi-
nating the ion with radiation resonant to its qubit transition frequency. Since the
qubit transition is usually in the microwave region, it can either be driven directly
using near-field electrodes or via a Raman process. The Raman process involves
two laser beams with frequencies that differ by the qubit transition frequency. The
illumination is called a π pulse if the qubit exactly flips its state and a π

2
pulse, if

5Another Nobel Prize was awarded to David J. Wineland in 2012 for developing experimental
methods for quantum experiments with trapped ions.

10

1.4 Mølmer-Sørenson Gate

the state is changed by 90°, which would bring a qubit from the ground state into
a superposition state.

Multi qubit gates are more difficult since the hyperfine states of different ions
cannot directly interact with one another. However, using similar techniques to
laser cooling, the internal qubit states can couple to the motional modes in the
ion crystal, thereby enabling communication between the internal ion states. A
motional mode refers to the degrees of freedom for coupled vibrations of the ions,
forming a complex structure in large ion crystals. The first such technique was
invented by Cirac and Zoller[CZ95] in 1995, representing the last fundamental
building block for a quantum computer based on trapped ions.

1.4 Mølmer-Sørenson Gate

Mølmer and Sørenson significantly improved the multi qubit entanglement pro-
cess via shared motional modes[SM99]. Instead of requiring the ions to be in
the groundstate for their coupling mode, as is the case for Cirac-Zoller, the ions
can already share several quanta of motion (phonons) in their mutual vibra-
tions.

The internal qubit states are coupled to the motional modes by driving the qubit
transition using a light-/microwavefield with a slightly off-resonant frequency. Due
to their quantized nature, the ion modes can only couple to the field if the energy
difference due to the off-resonant frequency is accommodated in the motional state.
This way the qubit becomes entangled with the motional mode, accommodating
the energy difference. If the frequency is slightly higher than the qubit “carrier”
frequency, the mode is driven in the “blue sideband”, for a lower frequency it is
driven in the “red sideband””.

When driven at red and blue sideband simultaneously, the ion is “virtually” entan-
gled with the mode, which simultaneously gains and loses a “virtual” quantum of
energy. By illuminating more than one ion with a lightfield which simultaneously
drives the red and blue sideband of a shared motional mode, all the ions become
entangled with the “virtual” mode simultaneously. If the ions are illuminated

11

1 Quantum Information Processing

by a pulse with exact timing and detuning from the mode frequency (which is
itself detuned from the qubit frequency), their internal states become maximally
entangled while the “effective” motional mode does not change.

However, a real Mølmer-Sørenson gate in a large ion crystal is complicated by
several imperfections. The first is that ideal pulses are hard to achieve and small
timing, frequency and intensity fluctuations can lead to degraded gate fidelities.
To achieve robustness against these degradations a reliable pulse shaping method
needs to be employed.[Zar+19]. Moreover, it is impossible to exclusively drive the
common “bus” mode in the ion crystal without also coupling to other modes (an
exemplary ion mode spectrum is depicted in Figure 1.3). Although small, this
coupling would leak quantum information to the ion motion and therefore impair
the gate fidelity. By intentionally coupling to many ion modes simultaneously and
ensuring their disentanglement with the transferred quantum information at gate
termination, one can accommodate for the complex mode spectrum in large ion
crystals[Sha+20].

This complex subject is similar for various quantum systems and has attracted a
lot of research focus in recent years. Theorists have proposed various schemes to

Figure 1.3: Exemplary ion mode spectrum[Cal]. The symmetrical structure of
the red (left) and blue (right) sideband is due to various vibrational
modes in the ion crystal. The modes are named by their movement
pattern like Center Of Mass (COM) where the ions all move back
and fourth in unison.

12

1.5 Existing Hardware Approaches

optimally control the gates and make them robust. Recently the FU Berlin physics
department also established a working group on quantum dynamics and control[19].
Yet, experimentally achieved gate fidelities still lag far behind the theoretically
predicted values.

1.5 Existing Hardware Approaches

With a growing number of researchers pushing for higher gate fidelities in trapped
ion systems, several hardware approaches for pulse generation are being explored.
While some of the schemes make use of Commercial-Of-The-Shelf (COTS) products
like Arbitrary Waveform Generators (AWGs), many systems are custom built by
the experimentalists. Since the focus is usually on publishing the result of an
experiment, scalability and generality are less of a priority. Furthermore, as the
schemes become more sophisticated, specific engineering knowledge like RF design
and DSP become necessary.

As a general survey of the hardware landscape for pulse generation is outside the
scope of this work, the system developed in [Zar+19] at the PTB is given as an
example. As depicted in figures 1.4b and 1.4a, many bulky and discrete components
are necessary to drive both sidebands and the carrier. The pulse shape is processed
by the AWG shown in Figure 1.4c[Bow+13]. While appropriate for basic tasks,
the limited digital bandwidth, memory and FPGA size make scaling up to more
complex pulses or bigger ion crystals challenging.

13

1 Quantum Information Processing

(a) Foto of the RF components for driving the red and blue sideband (labeled RSB and
BSB in the picture).

(b) Hardware Block Diagram[Hah19]. The
Ushape signal is provided by the NIST AWG. (c) NIST AWG PCB[Bow+13]

Figure 1.4: PTB Hardware for Mølmer-Sørenson microwave gates.

14

2 ARTIQ Framework

2.1 Instrumentation for Quantum Physics

Figure 2.1: An image of a quantum laboratory with several instrumentation
devices annotated[M-Lb].

As depicted in Figure 2.1, laboratories for quantum physics often contain a vast
array of optical, electrical and mechanical systems. Even for simple experiments
like changing the state of a hyperfine qubit, many inter-dependencies emerge.
Just loading the ion-trap is a many-step process and often requires several tries.
Therefore all of these systems have to be precisely orchestrated while maintaining

15

2 ARTIQ Framework

the ability to be reconfigured for different experiments. Since quantum experiments
are statistical in nature, many “rolls” have to be performed and experiment logic
has to be built in a dynamic way using loops and branching. Furthermore, the
short-lived nature and dynamic behavior of quantum systems impose constraints
on timing and jitter in signal sources.

2.2 Sinara

The Sinara ecosystem is a collection of hardware modules for quantum physics.
Each module is designed for one or several functions in a quantum experiment.
Examples include:

• 4 Channel, 1-400MHz DDS “Urukul” for driving AOMs

• 8 Channel, 16-bit, 1.5MSps ADC “Sampler” for photo-diode current digitiza-
tion

• 32 Channel, 16-bit, 1MSps DAC “Zotino” to drive trap electrodes

• 4 Channel, 13.6GHz Microwave Synthesizer “Mirny” for RF generation

The modules are connected to the “Kasli” main module using ribbon and coaxial
cables. Kasli acts as the central controller for the system and can itself be connected
to a host computer using Ethernet. It features the Artix-7 100T FPGA containing
custom Central Processing Units (CPUs) and gateware to communicate with the
host and drive the various daughter cards. Several Kaslis can be connected as core
and satellite systems, sharing a common time-base for experiment control. All of
the modules are designed to the Eurocard standard and can be assembled in a
Eurocard 3U chassis.

16

2.3 ARTIQ Overview

Figure 2.2: A selection of Sinara hardware modules[M-Ld]. In the standard
configuration the modules are mounted in a Eurocard 3U chassis.

The hardware is “CERN OHL v1.2” open-source licensed and developed by a
multi-institutional collaboration of companies, universities and research institutions
including the National Institute of Standards and Technology (NIST), Warsaw
Technical University, University of Oxford, M-Labs Ltd. and QUARTIQ GmbH,
with the latter two companies distributing the devices.

2.3 ARTIQ Overview

ARTIQ is built specifically to address the challenges in quantum experiments
described in section 2.1. As the split between performance and reconfigurability
necessitates sophisticated systems from various disciplines, a technical description
of ARTIQ is outside the scope of this work. The following will give a brief overview
of the main components with a focus on the segments relevant for integrating the
STFT pulse generator.

17

2 ARTIQ Framework

The user can describe an experiment in the Python programming language. The
program flow is split between code that runs on the host computer and code
which is executed on the embedded kernel CPU in the Kasli FPGA. The latter
has to be placed in a function with a @kernel decorator. When starting an
experiment, the Python interpreter will dispatch this function to the ARTIQ
backend which will then compile the code to be run on the kernel CPU1. When the
experiment reaches the point where a kernel function is called, the ARTIQ backend
sends the code to the embedded Random Access Memory (RAM) via a separate
communication CPU where it is executed by the kernel CPU. During execution the
kernel can communicate with the host through the communication CPU. Similarly,
a (standard Python) host function can be called from within a kernel function with
communication being handled automatically. The subset of Python which can be
compiled for execution on the kernel is called ARTIQ Python.

To interact with the Sinara hardware modules used in the experiment the physicist
can use the specific driver Application Programming Interface (API) from within
a kernel function. The API abstracts the underlying transactions between the
CPU and the modules via the Real Time Input/Output (RTIO) system. The
RTIO basically decouples the dynamical program flow from “wall clock” time.
Transactions with the modules are not evoked at some time in the program, but
instead scheduled to an exact point in “wall clock” time. The Scalable Event
Dispatcher (SED) handles all of the necessary logic for sorting the transactions
and acts as a data buffer2.

The RTIO PHYs3 accommodate the physical interfaces to the modules. Those can
range from simple I/O lines to custom gigabit interfaces like fastlink. Additionally,
some RTIO PHYs feature real-time logic for control and signal processing and can
write and read the main RAM via Direct Memory Access (DMA). On the module
side the communication is handled either by another FPGA or directly relayed by
the hardware.

1A description of the various software tools and compilers is omitted
2Several other logical functions have been omitted in the interest of brevity.
3short for “Physical Layer”

18

2.4 Development Tools

ARTIQ is developed and maintained by M-Labs in collaboration with QUARTIQ
and several other institutions. It is free software under LGPLv3+. A more detailed
documentation can be found in the manual [M-La].

2.4 Development Tools

ARTIQ relies upon a suite of electronic design tools for development and operation.
This section briefly mentions a selection used in the development of the STFT
pulse generator. All of the tools except for Vivado are open-source software under
various BSD licenses.

Python

Over the last decades, the Python programming language has become ubiquitous
across many fields. Popularized by being readable, open, and portable, it now
forms the core for tools in many emerging disciplines like machine learning, quan-
tum computing or bioinformatics. Using the well-established NumPy, SciPy and
Matplotlib packages, Python can be an engineering tool for scientific computing
and signal processing. ARTIQ uses Python for scripting experiments and as the
basis for the MiGen Hardware Description Language (HDL).

MiGen

MiGen[MiGen] is a Functional Hardware Description Language (FHDL) originally
developed by Sébastien Bourdeauducq for the Milkymist video synthesizer. In
contrast to standard HDLs such as Verilog and VHDL it provides a more generic
way to describe hardware. As all of the basic Python functionality like branching,
loops, functions and objects, as well as Python extensions remain usable, hardware
can be described in an abstract form. For example one could have a FIR filter
module that takes as inputs the design specifications and then uses SciPy and
MiGen to generate the optimal filter hardware.

19

2 ARTIQ Framework

KASLI

Module A

Python Program

high level
experiment logic

Communication CPU

process communications
and program memory

Python Interpreter

interpret code using
ARTIQ backend

Kernel Compiler

compile kernel code
for execution on
embedded CPU

 RAM

Kernel CPU

low level experiment
logic and scheduling

RTIO Phy

real-time communication
and signal processing

RTIO Phy

real-time input/output

RTIO Clock

cycle-acurate
time keeping

Module Gateware

real-time communication,
signal processing and

hardware control

Fa
st

lin
k

Module Hardware

Data conversion, signal
conditioning, etc.

Module Hardware

Signal level/conditioning

Module B

Input/Output

Input/Output

Scalable Event Dispatcher

FIFO, sorting, memory access,
clock domain crossing

Et
he

rn
et

di
re

ct
 I/

O

Host PC

Figure 2.3: The ARTIQ architecture spans several devices and abstraction
layers. Shown in blue are high level software functions running on
the host PC. Purple are low level software functions on the Kasli
FPGA. Gateware is shown in orange and hardware is depicted
in green. The unannotated arrows represent various interfaces,
communication or logical connections.

20

2.4 Development Tools

The same is true for the built-in simulator. Stimulus and simulated response
can be scripted and processed with the full Python toolkit. Circuit and Model
can be co-developed and numeric equivalence can be checked automatically. This
enables more software-like design flows like unit-testing and continuous integra-
tion.

There are a number of difficulties and pitfalls in hardware development with
MiGen. First, the use of Python requires the developer to be familiar with the
syntax, style and object-oriented paradigm of the language. Coupled with the
complexity of gateware design, this can be overwhelming for beginners. Secondly,
the built-in simulator sometimes behaves differently to synthesized gateware from
different toolchains. This is partly due to ambiguities in the intermediate Verilog
code generated by MiGen and interpreted by downstream tools. But also several
hardware descriptions such as signed fixed-point arithmetic or memory initialization
are simulated differently to what is described in the output Verilog code. This can
lead to time-consuming debugging.

LiteX [Ker+19] and MiSoC are examples of System on Chip (SoC) design frame-
works using MiGen. In addition to QUARTIQ and M-Labs, companies like Oxford
Ionics and Riverlane employ MiGen for quantum technologies.

MiSoC

Extending the FHDL functionality, the MiSoC framework provides designers with
several utilities and modules for SoC development. Infrastructure such as buses,
streams, timers, Integrated Logic Analyzers (ILAs) and connectivity can be specified
in Python while repetitive tasks such as bus topology and memory mapping are
automated. Several RISC-5 and OpenRISC soft-CPUs can be connected to an
ecosystem of included peripherals including: UART, GPIO, NOR flash controller,
SPI flash controller, Ethernet MAC, etc.

Additionally MiSoC contains an increasing number of customizable DSP cores
including CORDIC, DDS, FIR and CIC.

21

2 ARTIQ Framework

Vivado

As most of the Sinara hardware uses XILINX FPGAs for the digital systems, the
framework relies on Vivado to actually synthesize the gateware. However, instead
of using the Vivado Graphical User Interface (GUI), MiGen comes with tools that
invoke synthesis with the right parameters.

The designer can inspect the Vivado build logs to see if the synthesis process pro-
duced the intended gateware at the necessary performance. Correctly interpreting
the logs does however require specific experience. Finding the critical path in
an under-performing circuit can be very time-consuming as Vivado shuffles the
primitives around during optimization and therefore reports random paths as being
critical. Similar problems arise with other synthesis tools and timing optimization
remains a challenging task for gateware designers.

22

3 STFT Pulse Generator

3.1 Phaser hardware

As a new addition to the Sinara ecosystem, “Phaser” takes the role of a versatile
AWG with integrated RF upconversion. It could also be seen as a transmit only
Software Defined Radio (SDR). Being in a similar frequency range as modern 4G/5G
wireless systems, it can make use of high performance COTS components from the
communications industry. The Phaser Printed Circuit Board (PCB) is depicted in
Figure 3.1 with the main Integrated Circuits (ICs) annotated.

As the main digital IC, the XILINX Artix-7 XC7A100T FPGA [20] provides the
following resources:

• 101,440 6-LUT logic cells

• 240 DSP48E1 DSP slices

• 4860Kb block RAM

• 144 high-speed differential or 300 single-ended IOs

Those resources have to be shared between communications, control, interfaces,
glue logic and digital signal processing, with the latter taking up the lion’s
share.

The four channel, 16-bit, 1.25 Gsps DAC34H84 Digital-to-Analog Converter (DAC)
[15], originally developed for cellular communications, features a range of additional
functionality. Built specifically to drive I/Q RF modulators, it can perform internal
digital interpolation and upconversion to a wide frequency range. Integrated

23

3 STFT Pulse Generator

Xilinx Artix-7
XC7A100T

TI 1.25GSPS
DAC34H84

TRF372017
PLL/IQ Modulator

Figure 3.1: Phaser[Kas] PCB with the main ICs annotated.

quadrature modulator correction enables compensation for I/Q imbalance that
would lead to undesired spectral components.

Also developed for wireless infrastructure applications, the TRF372017 integrated
IQ modulator/PLL/VCO [16] is characterized by its low phase/amplitude noise and
high linearity. As it packs several functions into one package, board space is reduced
and parameters can be easily changed via a single interface.

Phaser was designed as a hardware platform for different signal generation schemes.
In the “classic” configuration the FPGA gateware hosts fixed interpolators with
subsequent Digital Up-Converters (DUCs) for the two RF output channels. The
interpolators are fed with samples from the main Kasli module via a Fastlink
interface.

As hardware development was not part of this work, it is treated as a commodity
and analysis of the analog performance is omitted.

24

3.2 Description

3.2 Description

3.2.1 Abstract

As discussed in section 1.3, novel and future approaches for Mølmer-Sørensen-style
gates can require complex pulse spectra on several frequency bands. The main
design goal of the STFT pulse generator is therefore to synthesize such spectra.
Furthermore, the pulse should be narrow-band windowed and emitted with precise
timing.

The architecture makes use of a number of combined signal sources with several
Intermediate Frequencies (IFs). By modulating complex signals onto a final analog
RF carrier, the spectrum can be shaped in the baseband with minimal undesired
spectral components in the RF.

As a compromise between complexity and functionality, 3 sets of 1024 tones with
customizable tone-spacing can be placed in a 400MHz window. This window
can itself be placed somewhere within [−400, 400]MHz from the [0.3, 4.8]GHz
carrier. This combination allows for a spectral composition in which carrier leakage
and I/Q imbalance artifacts will show up far away from the desired spectral
components.

3.2.2 Functional

Figure 3.2 depicts the pulse generator block diagram with the parameters listed
in table 3.1. The main signal computation consists of 3 STFT branches. Each
branch contains one block-FFT1 core with repeater, two interpolators for real and
complex signal components and one DUC, illustrated as sinusoidal signal source
and multiplier. Each FFT core gets a set of 1024 complex frequency parameters
[a−512, a511] which are transformed into a time-domain representation. The FFT
output is then continuously repeated and fed into the variable interpolators. As short
temporal blocks are stitched together, we call this a Short-Time Fourier Transform

1Since an FFT and an inverse FFT are basically equivalent from an engineering point of view,
“FFT” will refer to either in the context of the STFT pulse generator.

25

3 STFT Pulse Generator

(STFT). The interpolators compute the missing samples to the full 500MSps at
which the DAC is driven. Valid interpolation rates N are 2 and multiples of 4. The
output of each interpolator is finally upconverted by the frequency f0 which can be
specified at mHz resolution in a [−250, 250]MHz interval.

The outputs of the STFT branches are summed up and then multiplied with the
output of the window signal path. As the window path is only real-valued, real
and complex signal parts of the branches are both multiplied by the same signal.
The window features the same block-FFT core as the branches with the imaginary
time-domain output being discarded. The real part is interpolated by another
interpolator with a maximum rate-change of K = 8192. This window can be gated
and triggered with deterministic latency. After being transferred to the DAC, the
signal is interpolated again to 1GSps and upconverted by f1 = [−500, 500]MHz.
The DAC then converts the real and complex signals to the analog domain and
drives the I and Q inputs of a final, analog I/Q modulator, in fig. 3.2 shown as
an analog mixer. The RF input of the modulator is fed by a Phase-Locked Loop
(PLL), shown as an analog signal source, which can synthesize a frequency in the
f2 = [0.3, 4.8]GHz range.

STFT Branch

P * Gater/
Repeater

M Point
FFT N

f0

M Point
FFT

Pulse Out
DAC

R = 500
MS/s

 2

f1

f2a0 ... am ... aM

b0 ... bm ... bM

x

+

+ x

x

 K

Repeater

Figure 3.2: STFT pulse generator Block-Diagram

26

3.2 Description

Parameter Description Constraint

R base sample rate fixed 500MHz
M FFT size fixed 1024
P number repeated windows integer
N branch upsampling factor 2, 4, 8, 12, …, 1024
K window upsampling factor 2, 4, 8, 12, …, 8192
am branch FFT tone parameters complex 2x16bit fixed-point
bm window FFT parameters complex 2x16bit fixed-point
f0 internal DDS frequency [−250, 250]MHz
f1 DAC DDS frequency [−500, 500]MHz
f2 PLL LO frequency [0.3, 4.8]GHz

tpulse pulse time tpulse = M · P ·N · 1
R

f∆ frequency spacing f∆ =
R

M ·N

Bbranch branch bandwidth Bbranch =
R

N

fm tone frequency after upconversion fm = f0 + f1 + f2 ±m · f∆

Table 3.1: STFT Pusegenerator Parameters

3.2.3 Interface

The STFT pulse generator driver Application Programming Interface (API) exposes
the gateware configuration in convenient kernel functions. This section will give a
functional overview over the API functions and their usage. For the exact parameter
definitions see API documentationA.

Each FFT in the pulse generator can be loaded, cleared, started and configured indi-
vidually. The send_full_coef() function can be used to send a full 1024 point co-
efficient vector to a specific FFT core. stage_coef_adr() and stage_coef_data()
will stage FFT address and data on Kasli until a send_frame() call transfers them
to their destination FFT memory. This allows for up to 13 consecutive coefficients
to be written to an offset in a specified FFT core. start_fft() will trigger the

27

3 STFT Pulse Generator

FFT computation in a core. set_shiftmask() allows the specification of a scaling
schedule for each FFT2.

Signal processing parameters can be specified for each STFT branch individually.
The API provides set_duc_frequency() to set the DUC frequency, set_duc_phase()
to set the DUC phase and set_interpolation_rate() to set the branch interpo-
lation rate. The window FFT and interpolation rate can be configured in a similar
manner, being identified as a fourth FFT and interpolator. set_number_repeats()
allows the window to be repeated a number of times.

set_pulsesettings() allows the pulse generator to either:

1. continuously output the accumulated branch signals.

2. continuously output the windowed branch signals, infinitely repeating the
window.

3. output the windowed signal a specified number of times when the pulse is
triggered.

If the pulse generator is configured to the third option, the trigger() function will
trigger the emission of a pulse as soon as possible – either as soon as all pending
FFT computations are done or as soon as the trigger register in the Phaser FPGA
is written. However, because Kasli and Phaser are connected using a frame-based
real-time interface, the exact frame timing is crucial for a deterministic latency.
Using the get_frame_timestamp() function, the exact timing of a frame can
be stored in self.frame_tstamp and the trigger() function can schedule the
trigger flag to be sent an exact integer multiple of self.tframe later, resulting in
deterministic latency.

3.2.4 Practical Considerations

There are a couple of important considerations when configuring the STFT pulse
generator. The combination of various DSP components and their inherent dynam-
ics impose constraints on the valid parameters. Since some of the constraints are

2For technical detail refer to 3.3.1

28

3.2 Description

very dynamic, it is not practical to inhibit all erroneous constellations. The user
therefore has to be cognizant of the limitations and interactions in the architec-
ture.

Digital circuits are limited in their ability to represent signals. If signal ampli-
tude/frequency fall outside the allowed intervals, overflow/aliasing will occur. In an
aliasing condition, spectral content outside the representable bandwidth will appear
somewhere within the representable region. If a signal overflows (i.e. a sample
is outside the allowed value range), the output will be discontinuous, resulting in
strong harmonic distortion. While these effects can be tolerated or even useful if
accounted for, interpreting the output of an overflowing/aliasing circuit can be
questioning if not taken into account.

Overflow can happen at three places in the STFT pulse generator. The first and
most nuanced is within the FFT computation. Since the usual computation of an
inverse Discrete Fourier Transform (DFT) involves a 1

N
factor and the FFT works

in several stages, the 1
N

factor is usually achieved by bitshifting the intermediate
signals by one in every stage. The 1

2
factors in every stage compound to 1

N
at the

end of the FFT. With only a limited number of tones or small tone coefficients,
it is usually desirable to scale the output for maximum signal power and hence
SNR. This can be achieved by omitting the 1

2
factor in some FFT stages. However,

depending on the combination of coefficients and shiftmask, the signal might
overflow at the output or during the computation. While better shifting schedules
can be designed for special cases, the following usually yields adequate performance
without the risk of overflow:

1. The total scaling should be lower (next power of two) than the sum of the
coefficient magnitudes.

2. Scaling must generally happen in the later stages to avoid overflow in the
intermediate stages.

3. However, the first two stages can always be scaled (unless more than 256
tones are present).

4. The magnitude of each individual coefficient should not be greater than 1
(i.e. 1 + 1j should be avoided).

29

3 STFT Pulse Generator

The second place overflow can occur is at the adders summing up the branch
outputs where it will happen if the sum of the branch outputs does not fit into the
16 bit representation. Lastly, the FIR filters in the interpolators display inevitable
overshoot for abrupt signal changes. If the time-domain output of an FFT is such
that there is a step change close to the highest or lowest representable amplitude,
the signal will overflow3.

Aliasing has to be considered at the two digital upconverters in the architecture.
The “baseband” signal after the branch interpolator will occupy a bandwidth
proportional to the interpolation rate (see table 3.1) and defined by the FFT
coefficients. If spectral content is upconverted to outside the [−250, 250]MHz
window representable in a complex 500MSps signal, it will alias. Similarly, if
spectral content falls outside the [−500, 500]MHz window representable after the
DAC upconverter (f1), the signal will alias at this point.

Finally, the digital filters in the branch interpolator can only be built with a
transition band, attenuating the highest frequencies. For both branch- and DAC
interpolator, the transition band starts at 80% of the input Nyquist frequency,
meaning frequencies higher than this should not be present at the input. For the
branches and window this simply means, that the highest and lowest 10% of the
coefficients should be set to zero. Unfortunately the transition band of the DAC
interpolator is more difficult to avoid and the user has to make sure that none
of the upconverted tones of either branch lie outside the [−200, 200]MHz DAC
interpolator passband.

3With interpolation rates greater than 4, the effect will be surpressed by an additional Cascaded
Integrator Comb (CIC) filter. It will still produce unintended spectral components.

30

3.2 Description

3.2.5 Specifications

A summary of the specifications is given in table 3.2. Further details can be found
in the respective DSP module description.

Module Parameter Specification

General output sample rate 500MSps
data width 16 bit

FFT size 1024
arbitrary single tone SNR/SFDR >90dB/100dB
arbitrary 8 tone SNR/SFDR >70dB/90dB
arbitrary 128 tone SNR/SFDR >60dB/70dB

Interpolator image rejection >89.5dB
passband droop <0.9dB/10%
input cutoff frequency 0.8fN (80% Nyquist)
supported branch interpolation rates 2, 4, 8, 12, …, 1024
suppoted window interpolation rates 2, 4, 8, 12, …, 8192

Upconverter frequency resolution 58mHz
frequency range [-250, 250]MHz
SNR/SFDR >83dB/84dB

Table 3.2: Specifications

31

3 STFT Pulse Generator

3.3 Signal Processing

This section will give a technical description of the main signal processing blocks.
As the theory for blocks implemented or used in this thesis is well-established and
can be found elsewhere[Org07], the focus is on motivating the utilization, specific
design decisions and implementation.

3.3.1 FFT

The design of the FFT core reflects a compromise between performance, resource
requirements and complexity:

1. As undesired spectral components can contribute to ion heating or even drive
unintended modes in the ion crystal, SNR and Spurious Free Dynamic Range
(SFDR) performance need to be adequate.

2. Since the FFT is used to generate samples which are further processed by
fixed-point DSP circuits and a floating point FFT is resource inefficient, a
fixed-point FFT should be employed.

3. The FFT output should be persistent and accessible in FPGA RAM after
computation.

4. An FFT computation should be reasonably quick.

5. Resource requirements should be reasonably low.

6. Due to limited development time, highly sophisticated schemes are unfeasible.

Performance

The ubiquitous FFT algorithm significantly reduces the computational complex-
ity of a DFT by successively applying elementary “butterfly” computations in
a divide-and-conquer scheme. The whole FFT is thereby broken up into stages,
each of which iterates the butterfly operation over the data. A butterfly com-
putation consists of additions, subtractions and multiplications with “twiddle”
factors.

32

3.3 Signal Processing

A 1024 point, radix-2, Division In Time (DIT)4 algorithm was chosen for the FFT
core. This variant has the best SNR performance of possible fixed-point FFT
implementations[CN08], requires the least resources and is simple to implement.
It is, however, also the slowest algorithm. DIT is favorable over Division In
Frequency (DIF) since trivial computations are performed first, which leads to
better performance5. The number of FFT points is a compromise between number
of possible tones per STFT branch and resource requirements (maximizing specific
FPGA primitives as discussed later).

The fixed-point arithmetic entails several consequences and particularities in theory
of operation. Since the usual inverse Discrete Fourier Transform (DFT)

xn =
1

N

N−1∑
k=0

Xk · e
2π
N

jkn, (3.1)

where xn is the n’th time domain sample, Xk the k’th frequency domain sample
and N the size of the inverse DFT, features a 1

N
factor in the computation, a

straight-forward fixed-point inverse DFT would occupy only a small fraction of the
output dynamic range.

In order to make use of the full output dynamic range we need to scale the
computation of the FFT core. Because a single point of scaling would either require
the use of a large intermediate fixed-point representation, or introduce significant
error, a distributed scaling scheme is employed. Furthermore, a specific shifting
schedule can be supplied for each FFT computation so as to maximize the SNR in
various scenarios.

This additional control is desirable because we want scaling to happen as early in
the computation as possible, so as to not lose precision in the intermediate rounding.
This intermediate rounding is inevitable since each input sample is subject to several
multiplications during the computation. After each multiplication the output has
to be rounded to the internal computation width again. For the FFT core this
internal computation width is fixed to 18 bit. Therefore each rounding operation

4Unfortunately the literature is inconsistent with the DIT and DIF terms. Here DIT will always
refer to a division in the input data, agnostic of domain.

5Computation errors will be discussed at a later point.

33

3 STFT Pulse Generator

introduces, on average, 0.25 Least Significant Bit (LSB)6 of error, if we assume
the error to be uniformly distributed. This error is propagated and potentially
exacerbated by downstream scaling operations. A more sophisticated error analysis
for a fixed-point radix-2 DIT FFT can be found in [Ma97].

An inverse DFT can be seen as a sum of complex sinusoids. Depending on the spec-
tral distribution, the sinusoids can “constructively” accumulate in some time-domain
samples or cancel out. For a general vector of frequency coefficients it has to be
assumed that the maximum time-domain sample xmax will be

xmax =
1

N

N−1∑
k=0

Xk. (3.2)

This has to be considered when choosing a scaling schedule for the FFT core as
too much scaling will lead to arithmetic overflows. The scaling schedule should
always be optimized so that the output uses the full dynamic range, but not
more.

Figure 3.3 shows the performance of the FFT core for a number of different scenarios.
3.3a displays the naive fixed-point FFT performance for a single full-range input
coefficient. The noise exhibits some structure as the errors are distributed in the
spectrum during the computation. 3.3b shows an FFT with the same input, but
with scaling in every stage. The output tone is now also at full-scale and the
noise shows a different pattern. 3.3c and 3.3d depict a full-scale output 8-tone
FFT with different scaling schedules. 3.3d shows significantly improved SNR and
SFDR, since the early scaling is favorable. 3.3e portrays an optimized scaling
scheme for an arbitrary set of 128 input coefficients. An interesting special case is
detailed in 3.3f, where 8 tones are distributed in a bit-reversed ascending order.
Bit-reversing refers to the index written out in binary and then interpreted right-
to-left to yield the bit-reversed index. This leads to equidistant tones in natural
order, also called a frequency comb. Here the FFT algorithm happens as such that
the samples are only shuffled around and never multiplied with non-trivial twiddle
factors. The resulting time-domain pulse comb is perfectly expressed in fixed-point
representation.

6LSB refers to the signal value represented by a single bit.

34

3.3 Signal Processing

0 200 400 600 800 1000
150

100

50

0
Signal Level: -54.2 dB
SNR: 38.5 dB
SFDR: 39.7 dB

(a) Single tone, no scaling

0 200 400 600 800 1000
150

100

50

0
Signal Level: -0.0 dB
SNR: 93.8 dB
SFDR: 101.9 dB

(b) Single tone, max scaling

0 200 400 600 800 1000
150

100

50

0
Signal Level: -18.1 dB
SNR: 75.1 dB
SFDR: 78.9 dB

(c) 8 tones, scaling last

0 200 400 600 800 1000
150

100

50

0
Signal Level: -18.1 dB
SNR: 83.3 dB
SFDR: 93.4 dB

(d) 8 tones, scaling first

0 200 400 600 800 1000
150

100

50

0
Signal Level: -34.4 dB
SNR: 61.9 dB
SFDR: 77.0 dB

(e) 128 tones, scaling first

0 200 400 600 800 1000
150

100

50

0

Signal Level: -18.1 dB
SNR: dB
SFDR: dB

(f) 8 tones, bitreversed

0 200 400 600 800 1000
150

100

50

0

Signal Level: -0.9 dB
SNR: 77.0 dB
SFDR: dB

(g) 4 cycle square wave

0 200 400 600 800 1000
150

100

50

0
Slot depth: 74.9 dB
SNR: 79.5 dB

(h) 16 bit ideal slot test

0 200 400 600 800 1000
150

100

50

0
Slot depth: 74.2 dB
SNR: 76.8 dB

(i) FFT core slot test

Figure 3.3: 9 FFT computation scenarios for the developed core. For each
scenario an ideal 1024 point FFT of the time-domain output is
depicted. The y-axis is the spectral magnitude in dB relative to
a Full-Scale sinusoid (dBFS) and the x-axis are the FFT bins.
For each scenario additional information is given. Signal level
refers to the magnitude of the strongest signal bin. The SNR is
calculated as follows: Signal power is defined as the ideal signal
power output by an ideal FFT (scaled to be equivalent to the core
output). The error signal is determined by subtracting the ideal
signal from the FFT core output. The noise power is defined to
be the power of this error signal, with the SNR being the ratio
of the two terms. The SFDR is simply given as the difference of
the highest signal and the highest noise bin. Since 3.3h is not
computed by the actual FFT core, it is plotted in a different color.

35

3 STFT Pulse Generator

Another interesting case is demonstrated in 3.3g. The scaling scheme allows for
the synthesis of a full-scale time-domain squarewave, even though two full-scale
tones at arbitrary positions would lead to overflow. 3.3h and 3.3i show the output
of a “slot test”. For a slot test all of the FFT frequency bins are initialized with
maximum amplitude, random phase samples. Then a “slot” is cut out by setting
a number of consecutive samples to zero. Afterwards the FFT of the remaining
“depth” of the slot is compared. 3.3h has been computed with an “ideal” double
precision float FFT and then time-domain quantized to 16 bit. 3.3i shows that the
output of the FFT core has comparable performance.

Architecture

Data
RAM 2a

Radix-2
Butterfly

Core

x -

+

Data
RAM 1

Data
RAM 2b

D
at

a
Sc

he
du

le
r

D
at

a
Sc

he
du

le
r

Twiddle ROM

Rotator

0

1

S0

0

1

S0

0

1

S0

0

1

S0

0

1

S0

Input Data

Output Data

Figure 3.4: FFT Block-Diagram

Since the FFT will be used in the STFT scheme with the output repeated several
times, a block-FFT is the natural form of implementation. In a block-FFT the
data is always stored in the same location and iterated over to compute the FFT.

36

3.3 Signal Processing

At the end of computation, the data is transformed into time-domain and samples
can be randomly accessed. The overall block diagram is depicted in Figure 3.4
with the individual blocks explained later in the text.

As we want the computation to happen as fast as possible with reasonable resource
overhead, the design features a single, fully pipelined butterfly computation core.
This core ingests two input samples a, b and one twiddle factor w and expels two
output samples c, d in each clock-cycle. Separating the computation of the output
samples

c = a+ wb (3.3)

d = −a+ wb (3.4)

into their real/imaginary components

cr = ar + brwr − biwi (3.5)

ci = ai + brwi + biwr (3.6)

dr = −ar + brwr − biwi (3.7)

di = −ar + brwi + biwr (3.8)

and then rewriting the complex outputs as

ci = ai + (br + bi)(wr + wi)− brwr − biwi (3.9)

di = −ar + (br + bi)(wr + wi)− brwr − biwi (3.10)

yields a set of equations with 3 real multiplications in total7.

Allocating the equations to arithmetic primitives in the FPGA yields the datapath
shown in Figure 3.5. The full computation can be accomplished using only 3 DSP
blocks and 4 fabric adders. To achieve the 250MHz fabric clock, a pipeline register
is located after every elementary arithmetic operation. The core thereby uses 6
computational steps plus one step at the input and output to pipeline the memory

7Note that the same multiplication is present in several equations and therefore only requires a
single instatiation in the circuit.

37

3 STFT Pulse Generator

access. There are shifting operations in two of the computational steps. The second
shift is configurable by an additional shift input and actualizes the stage scaling.
When there is no scaling, the output is shifted by one, hence applying a factor of
1
2
. Doing this in every stage leads to the “natural” 1

N
factor in the inverse DFT

computation. If the output should be scaled in the current stage, the output is not
shifted which can lead to bit growth on the output.

+ -

x

(a) Butterfly Signal-Flow

+

x

-++
Bias

xx

- -

>> >>

+ +- -

>> >> >> >>

1

6

5

4

3

2

Stage Shift

(b) Butterfly Datapath

Figure 3.5: Butterfly Signal-Flow and Datapath. The dashed lines in the
datapath diagram illustrate register stages in the dataflow. The
blue boxes signify the underlying DSP block actualization.

The first shifting operation, at the output of two DSPs, is used in conjunction with
the bias to implement rounding. The rounding makes use of the fact that multipli-
cation output width is the sum of the widths of the inputs. By adding a constant
equivalent to 0.5 input LSBs to the output, where one input LSB is represented
by many bits, the output gains this offset. After shifting behind the output, the

38

3.3 Signal Processing

offset is negated by the negative offset introduced by the shifting operation. This
procedure actualizes the “round half up” rounding scheme.

The butterfly computation iterates over the data vector once per FFT stage. Since
the data is stored in a RAM block in the FPGA, the correct addresses of the inputs
and outputs must be computed. Because we want a total of four memory locations
to be accessed in one cycle, we need at least two dual-port memories. However,
because the order of access changes in every stage, we need a predictive scheme which
sorts the outputs of the butterfly core into memory in a way that allows a future
butterfly operation to access inputs from different memories.

The matter is further complicated by the fact that the butterfly core has an 8
cycle pipeline delay. This delay leads to memory access congestion at the stage
transitions, where input data from the new stage is accessed, but the output data
is 8 cycles delayed and therefore still from the last stage. To remedy this problem,
the FFT core alternates two separate memories for the second butterfly input and
output. There are better schemes which do not require for an extra memory bank
by additionally accounting for the pipeline delay and altering the computation
order within a stage [Ric+15]. As these schemes come with significantly increased
complexity and memory was not a limiting resource, the simpler scheme is employed.
The memory access pattern is illustrated in Figure 3.6.

The memory logistics as well as the FFT input and output access are aggregated
into the data scheduler circuitry. This module also keeps track of the computa-
tion flow and sets the butterfly scaling signal in the relevant FFT stages. The
scaling schedule is simply a register in the data scheduler accessible from outside.
The scheduler has the additional task of allocating the FFT input data to the
memories and bit-reversing the addresses, if configured to do so. The bit-reversing
is an integral part of the FFT algorithm. At the output, the scheduler acts as
an address decoder, abstracting the multi-memory architecture for downstream
modules.

Reflecting the 36 bit architecture of the XILINX RAMB36 primitives, the FFT core
uses 36 bit for one complex sample. Therefore, the real and imaginary parts are
each 18 bit wide, thus also maximizing one input of the DSP48E1 18x25 multipliers.

39

3 STFT Pulse Generator

0 0

0 0

0

1

1 1

1 1

2 2

2 2

3 3

3 3

0

1

2

3

2

3

0

1

2

3

0

1

2

3

Stage 0 Stage 1 Stage 2

Figure 3.6: Simplified 8 point FFT memory banking scheme. The memory
banks are illustrated with different colors and the respective entry
address is shown. RAM1 is shown in orange, RAM2a in purple
and RAM2b in blue. Using this scheme, neither the butterfly
inputs nor the outputs ever access the same memory bank.

The data memories fully occupy the 9 bit address space of a RAMB36 block for a
1024 point FFT. The same datastr ucture is used for the twiddle factors, hence
occupying a single RAMB36 block. Additionally the twiddle factors are compressed,
exploiting the symmetry of the unit circle. The mapper uses the leading three bits
of the twiddle address to rotate the twiddle factors stored at the address defined
be the remaining bits to the correct eighth of the circle.

There is a nice synergy between the 16 bit input data, the 18 bit internal precision
and the radix-2 DIT scheme. In this FFT variant, all of the twiddle factors in the
first two stages point in the direction of the real or imaginary axis and are therefore
perfectly represented in fixed-point arithmetic. In conjunction with the fact that
we can always scale the first two stages because we can let the inputs grow to 18
bit, we avoid rounding errors in the first two stages. As stated before, errors in the
beginning of the computation are the most critical.

40

3.3 Signal Processing

3.3.2 Interpolator

The development of the interpolators was driven by the following design considera-
tions:

1. For the same reasons as in the FFT, undesired spectral components are to
be avoided and therefore interpolation performance has to be adequate.

2. Adaptive tone-spacing of an STFT branch requires a changeable interpolation
rate R without FPGA reconfiguration.

3. As a dispersion of the pulse waveform could change the phase-space trajectory
described in section 1.4, a constant group delay is required.

4. The interpolator has to compute two output samples in one clock-cycle.

5. Since there are several interpolators in the design, DSP and fabric resource
requirements matter.

Performance

Finite Impulse Response (FIR) Half-Band Filters (HBFs) are efficient linear phase
filters. By imposing the constraint

H(ejΩ) +H(ejΩ−π) = 1, (3.11)

where H is the frequency response and Ω represents the normalized angular fre-
quency in radians per sample, and

N = (4 · n)− 1, (3.12)

where N is the number of filter taps and n is a natural number, the frequency
response is centered around Ω/2. As a result, every second coefficient, except for
the center tap becomes zero. Additionally, the symmetrical impulse response halves
the number of multiplications and makes use of DSP pre-adders. A polyphase
decomposition of a R = 2 HBF interpolator leads to the aggregation of the non-zero

41

3 STFT Pulse Generator

multiplications in one polyphase path. The other polyphase part reduces to a
unity-gain delay [Göc11].

A Cascaded Integrator Comb (CIC) filter is a special case of a multiplier-less FIR
filter. As the name suggests, instead of delaying and multiplying the input, it
constitutes a cascade of integrator and comb stages. While this arrangement makes
for a very resource efficient implementation, the filter has a limited range of possible
frequency responses. However, as no new filter coefficients have to be provided, the
response can be adapted easily during operation.

Since a monolithic filter for the whole interpolator would not be very flexible or
efficient, a variable filter cascade is employed. At R = 2 the interpolator uses
a single, sharp HBF with a transition band form ωp = 0.4Ω to ωs = 0.6Ω, with
ωp being the passband frequency and ωs the stopband frequency. The minimum
HBF size for an image rejection of higher than 90dB was found to be 59 taps
using the Parks–McClellan/Remez algorithm. The design parameters were cho-
sen as a compromise between performance and size. Due to the high stopband
attenuation and the symmetrical nature of the frequency response 3.11, passband
ripple is not a concern. A zero stuffer inserts a zero between each sample and the
filter input8. The frequency magnitude and impulse response is shown in Figure
3.7a.

The R = 4 interpolator uses the R = 2 interpolator described above with a second
R = 2 stage. The second stage has the same structure as the first. However, the
design constraints for the second HBF are relaxed in comparison to the first. Since
the first stage already suppresses images above 1

2
Ω1, with Ω1 being the normalized

angular frequency of the first HBF, there can also be no significant aliases between
1
4
Ω2 and 3

4
Ω2, with Ω2 being the normalized angular frequency of the second HBF.

As displayed in Figure 3.7b, a HBF with 23 taps is sufficient for an image rejection
of >90dB in the stopband.

8In the actual implementation this zero stuffer is abstracted away. See 3.3.2.

42

3.3 Signal Processing

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Angular Frequency (Radians/Sample)

120

100

80

60

40

20

0

At
te

nu
at

io
n

(d
B)

Passband
Stopband

0 10 20 30 40 50
Tap

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

M
ag

ni
tu

de

(a) HBF1 - 59 Taps

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Frequency (Radians/Sample)

120

100

80

60

40

20

0

At
te

nu
at

io
n

(d
B)

Passband
Stopband

0 5 10 15 20
Tap

0.1

0.0

0.1

0.2

0.3

0.4

0.5
Re

la
tiv

e
M

ag
ni

tu
de

(b) HBF2 - 23 Taps

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Angular Frequency (Radians/Sample)

120

100

80

60

40

20

0

At
te

nu
at

io
n

(d
B)

Passband
Stopbands

0 5 10 15 20 25 30
Tap

0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e

M
ag

ni
tu

de

(c) CIC6 - 31 Taps

Figure 3.7: Frequency magnitude (left) and impulse response (right) for the
three interpolator filters. Relevant frequency bands are highlighted
in each frequency response. The CIC response is plotted with an
exemplary rate-change of RCIC = 6.

43

3 STFT Pulse Generator

For interpolation rates greater than four, the interpolator constitutes the two HBF
stages and a third CIC stage. Because the second HBF stage has halved the
passband again, the design constraints are further relaxed. As the CIC frequency
magnitude response

|H(ejΩ)| =
∣∣∣∣sin(ΩD/2)

sin(Ω/2)

∣∣∣∣M , (3.13)

where M and D are the CIC order and differential delay of the comb stages, has
troughs around

Tn =
n

D
, (3.14)

with n being a natural number, we prefer the passband to alias into those troughs.
This is given when

RCIC = D. (3.15)

An example for RCIC = 6 is depicted in Figure 3.7c.

0.0 0.2 0.4 0.6 0.8 1.0
Normalized Angular Frequency (Radians/Sample)

200

175

150

125

100

75

50

25

0

At
te

nu
at

io
n

(d
B)

Worst case Image: -89.7dB

HBF1 + HBF2 Rcomp = 4
HBF1 + HBF2 + CIC2 Rcomp = 8
HBF1 + HBF2 + CIC8 Rcomp = 32

Figure 3.8: Composite frequency responses for various interpolator configu-
rations. The worst case image for Rcomp = 8 is highlighted. As
Rcomp increases, the images are suppressed further.

As we need the CIC stage to realize rate-changes of 2 to 1024, the CIC has to
provide >90dB image rejection for all configurations. It was found that a 6th order
M = 6 CIC at R = D = 2 is just barely short of this performance. Nonetheless,

44

3.3 Signal Processing

89.7dB of image rejection was deemed sufficient. As shown in Figure 3.8, the aliases
are attenuated further at higher rate changes.

Unfortunately, a CIC filter exhibits inevitable drooping of the passband. This droop
is exacerbated as the rate-change and thus differential comb delay increases. For the
interpolator, this is effect is mitigated by the fact that the passband is compressed
by the two leading HBF stages. The droop for a selection of rate-changes is
plotted in Figure 3.9. As remaining droop can easily be accounted for in the FFT
coefficients, a worst-case of -0.86dB was deemed tolerable.

Another downside of the cascaded interpolator architecture is that the rate change
can not take any value. RCIC can be any natural number greater than 1. However,
as the composite rate-change is multiplicative

Rcomp = RHBF1 ·RHBF2 ·RCIC , (3.16)

this entails a rate-change granularity of 4 for the whole interpolator at R >

2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative Angular Frequency(RCIC)

200

175

150

125

100

75

50

25

0

At
te

nu
at

io
n

(d
B)

RCIC = 2
RCIC = 3
RCIC = 4
RCIC = 1024
Input Passband

0.00 0.02 0.04 0.06 0.08 0.10
1.0

0.8

0.6

0.4

0.2

0.0

Worst Case Passband Droop: -0.86dB

Figure 3.9: CIC passband droop for various rate-changes RCIC . As the normal-
ized angular frequency is different in every case, the attenuation is
plotted over a frequency relative to RCIC . The relative passband
width is constant for all rates.

45

3 STFT Pulse Generator

Architecture

As the interpolator must be synthesized with the necessary performance9, further
optimizations in the implementation are necessary. Though the first stages often
run at a sample rate R much slower than the FPGA fabric clock RCLK = 250MHz,
every stage can potentially be the last and therefore have to serve the DAC at
RDAC = 500MHz. Consequently, a 2x super-sampled architecture is necessary for
every filter. Super-sampled refers to the fact that the circuit processes more than
one sample per clock-cycle.

For the HBFs, we can exploit the multirate decomposition for supersampling. Since
every second output sample is just a delayed version of the input and the other
polyphase path runs at the input sample rate, we can run them both at RCLK to
achieve a throughput of 2RCLK . The nontrivial path is fed with one input sample
per cycle and no stuffed zeros, leading to a standard filter.

To stay within the 240 DSP limit of the FPGA, a custom, DSP multiplexed
architecture with several optimizations is employed for the HBFs. First it is
realized, that the number of operations per cycle stays roughly constant whether
just HBF1 or HBF1 and HBF2 are engaged. This is because HBF2 is approximately
half the size of HBF1 and HBF1 always operates at RHBF1 = RHBF2/2. Hence, it
is possible to time-multiplex the resources of HBF1 when HBF2 is engaged, freeing
up the rest of the DSP blocks for HBF2 computation.

This results in the multiplexed DSP architecture illustrated in Figure 3.10. The
XILINX DSP48E1 DSP circuitry10 is shown in blue with all of the internal registers
and arithmetic enabled. The d delayed filter inputs xA

[n−d] for filter A and xB
[n−d]

for filter B are multiplexed into the pre-adder inputs, while the bAd (filter A) and
bBd (filter B) filter coefficients are multiplexed into the multiplier input. When
the multiplexing signal h is true, the DSP computes one output of one filter
tap

pd+1 = ((xA
[n−d1]

+ xA
[n−d2]

) · bAd) + pd (3.17)

in one clock-cycle for filter A. When h is false, the t signal alternates between
9Performance in the architectural context refers to the maximum clock rate for the gateware.

10See XILINX DSP Usage Guide[18] for details

46

3.3 Signal Processing

 DSP48E1

01

S0

01

S0

DA

C

+

+

AD

M

P

t

01

S0

01

S0

t t

h h

0

1

S0

h

0

1

S0

B

x

0

1

S0t
h

Figure 3.10: Signal flow of the multipexed DSP architecture. Depending on
the control signals different filters are realized.

true and false with a two cycle period. This leads to the computation of one
accumulated output of two filter taps

pd+2 = ((xB
[n−d1]

+ xB
[n−d2]

) · bBd) + ((xB
[n−d1−1] + xB

[n−d2−1]) · bBd+1) + pd (3.18)

every second cycle.

With all of the optimizations, HBF1 requires 15 multiplications to compute two
new output samples and HBF2 requires 7. Therefore, the whole DSP cascade
consists of 15 multiplexed DSP blocks. When only HBF1 is engaged, h is true and
filter A takes the role of HBF1 for all DSPs. If both HBF1 and HBF2 are engaged,

47

3 STFT Pulse Generator

h is false for the first 8 DSPs and filter B now becomes HBF1. In the latter 7 DSPs
h is still true with filter A now actualizing HBF2.

There are a few additional adjustments necessary to make the architecture execute
the desired function. First, the trivial polyphase sample from HBF1 has to be
piped into the input of HBF2 with the correct delay. Second, a zero multiplication
has to be injected in the last time-multiplexed DSP because HBF1 requires an odd
amount of multiplications. Third, as filter rounding for the DSPs is performed by
piping an offset value into the C input of the first DSP block, this offset must be
applied every second cycle for filter B.

Using this arrangement, the second HBF can be implemented at zero DSP cost.
The downside is that the multiplexers use more fabric logic, though this was not
the limiting resource for the STFT pulse generator.

In order to make the interpolator meet the RCLK = 250MHz timing requirements,
pipelining has to be used between each computation and DSP block. During
development it was found that the C register of the DSPs was not necessary to meet
timing in a design containing only one interpolator. Yet, with the full STFT pulse
generator and additional circuits, it was found that the C register is required. As the
C register actualizes a unit delay between the postadders in the DSP chain, the filter
topology had to be adapted. Figure 3.11 shows three iterations of HBF topologies
with the last one being utilized in the final interpolator.

For most interpolation rates the CIC stage is last and hence it is required that
the CIC operates super-sampled as well. Since we use the CIC for interpolation,
only the integrator stages have to run at the output sample rate and thus super-
sampled. This is accomplished by operating two separate interpolators in each
stage, one of which accumulates two input samples per cycle. Both integrator
outputs are passed onto the next stage where the first integrator accumulates the
first input and the second integrator accumulates both. Aside from the accumulator
register there is one more pipeline register in each stage for pre-adding the two
inputs.

Another consequence of the super-sampled CIC scheme is that the interpolator
stage does not ingest samples at evenly spaced intervals for uneven interpolation

48

3.3 Signal Processing

+ + +

+ +

+

+

xxxx

(a) Naive HBF architecture. All the multiplier outputs have
to be accumulated in one cycle.

+ + +

+ +

+

+

xxxx

(b) HBF architecture 1. A single unit delay in the adder
cascade.

+ + +

+ +

+

+

xxxx

(c) HBF architecture 2. Two unit delays between each adder.
The pre-adder inputs have to be restructured accordingly.

Figure 3.11: Three iterations of the HBF topology.

rates. For RCIC = 3 the core ingests on average 0.66 samples per cycle and
expels exactly two. In other words, the stage needs to wait on average 0.33 cycles
between every input sample. To account for this, the stage alternates the waiting
periods between the closest natural numbers so that the average rate is correct.
As a consequence, all of the differentiators have to be run at this staggered clock.
Furthermore, additional logic is necessary to ensure the correct output stalling
behavior in the upstream HBFs.

49

3 STFT Pulse Generator

Owing to the high M = 6 filter order, the integrator accumulator widths be-
come very large for the latter stages. Since the register bit width is given
by

Wreg = Win + ((M − 1) · log2(R)) (3.19)

with Win being the input bit width, it follows that

Wreg = 66bit (3.20)

for a maximum rate-change of 1024 with 16-bit inputs. Fortunately, thanks
to fast carry logic in the FPGA slices, a 66 bit adder is realizable at RCLK =

250MHz.

Also, since
|H(0)| = RM−1, (3.21)

the DC gain of the filter becomes very substantial and not a power of two in many
cases. It can thus not be compensated via simple bitshifting. To overcome this
problem the CIC uses a Look-Up Table (LUT) with compensation values in a
custom format. There are 11 bit of linear, fractional, fixed-point gain which is
applied at the input of the CIC and 7 bit of bitshifting (i.e. power of two) gain,
which is applied at the output. This compromise uses just a single DSP at the
input, one RAMB18 block and some logic for the variable bitshifting at the output.
The DC gain is essentially unity using this scheme.

An approach to build a multiplier-free interpolator would be to employ a “Sum
Of Powers Of Two” (SOPOT) architecture similar to [CY02]. Here the hardware
multipliers are replaced with clever bitshifting and addition to make for very
efficient, though not very flexible, filter tap computation. The restricted choice of
filter coefficients could lead to a minimal increase in filter size, as the zeros of the
transfer function do not land exactly on the unit circle. Since the multiplications
of the STFT pulse generator fit into the 240 DSPs of the XC7A100T FPGA, this
design effort was not required. However, a fourth STFT branch would already
require adaptations of the interpolators.

50

3.3 Signal Processing

3.3.3 Upconverter

Since the DUC was not a custom development for the STFT pulse generator, this
section only gives a brief overview of the implementation.

Performance

The DUC consists of a Numerically Controlled Oscillator (NCO), a Direct Digital
Synthesis (DDS) and a complex multiplication. An NCO is just a phase accumulator
with Frequency Tuning Word (FTW) and Phase Offset Word (POW) inputs, which
generates a monotonically increasing phase which wraps around at 2π. The DDS
generates a complex sinusoid signal from the NCO phase, which is then modulated
with the baseband by the multiplier.

Synthesis of the carrier is not trivial since a complex, high resolution sinusoid
either needs significant memory or computational resources if implemented in
a naïve way. While computational methods such as the well-known CORDIC
algorithm often require neither the complex multiplier nor other multiplications,
their implementation can be very resource demanding, especially at high clock
frequencies.

The DUC synthesizes the carrier using a hybrid LUT/computational scheme. It
takes an 18 bit phase input and produces 16 bit real/imaginary outputs. One octant
of a low resolution, 9 bit phase, 15 bit real/imaginary circle is stored in a LUT.
Additionally, one octant of a 9 bit phase, 3 bit real/imaginary scaled derivative
of the circle is stored. The 6 LSB of the phase input are then used to linearly
interpolate between the coarse LUT samples using the derivative stored in the
additional LUT. The interpolated sample is mapped into the correct octant using
the remaining 3 Most Significant Bit (MSB) of the phase input.

To gain a higher frequency resolution, the NCO operates at a phase width of 32
bit. The phase is then truncated to 18 bit at the DDS input. This architecture
can synthesize a >83dB SNR, >84dB SFDR carrier for every possible output
frequency. Dithering of the truncated DDS input could smooth out spurs from
phase truncation and correlated computation errors and therefore improve the worst

51

3 STFT Pulse Generator

Figure 3.12: Scatter plot of 105 equidistant output frequencies of the DDS
with a 500MSps sample rate. Evaluating the output SNR and
SFDR at more points could lead to slightly lower values for their
respective worst cases.

case SFDR at the cost of impaired average values for SNR and SFDR. However, the
achieved performance was deemed acceptable without dithering. SNR and SFDR
at various output frequencies are depicted in Figure 3.12.

Architecture

The LUTs combined are 36 bit wide and have a 9 bit address space. Hence, they
fit exactly into one XILINX RAMB36 primitive. The 3x6 multiplication for the
interpolation is implemented in fabric logic, just like the 16 bit adder to add it
to the coarse LUT sample. The octant mapping reduces to multiplexing. The
architecture is illustrated in Figure 3.13. Not shown are pipeline registers between
all computations, memories and multiplexers.

To achieve the 2x supersampling necessary for the STFT pulse generator, two
independent DDS make use of the same LUT RAM with two separate read ports.

52

3.4 ARTIQ integration

The NCO generates two consecutive phase samples in one clock cycle. Similarly,
two separate complex multipliers modulate the two baseband samples from the
interpolator onto the two carrier samples. The multipliers are essentially the
same as the butterfly core from 3.3.1, just without the last adder stage. They
consist of three DSP blocks each and introduce little rounding error, as discussed
in 3.3.1.

Derivative
LUT+ Phase

Circle
LUT

x +

Mapping

9

3

6

FTW

Output

+

POW

Truncate
32 18

2x3 2x15

2x16
2x16

RAMB36

Figure 3.13: Simplified DDS Block-Diagram. Relevant signal widths are
marked.

3.4 ARTIQ integration

As illustrated in Figure 3.14, various infrastructure modules are necessary on Kasli
and Phaser to drive the STFT pulse generator.

Starting from the actual DSP blocks, there are a number of Control/Status Registers
(CSRs), locally storing configuration parameters like branch interpolation rate,
branch DUC frequency, master pulse settings, etc. The CSRs are connected using
a simple CSR bus and accessed by a bus master. The bus master uses the CSR
address and data transmitted in a header by the Fastlink frame-based interface.
This interface connects the Phaser FPGA with the central Kasli FPGA and
provides gigabit data rates in the Kasli-Phaser direction with simple CSR readback
functionality in the Phaser-Kasli direction. The Serializer-Deserializer (SerDes)

53

3 STFT Pulse Generator

KASLI

SED

Kernel CPU

STFT Pulsegen
Driver API

Phaser PHY

Coefficient stagingHeader staging

Fastlink
SerDes

FFT-Address staging

PHASER

rtlink outrtlink in

Whishbone Bus

STFT Pulsegen

FFT Loader

Decoder

Bus masterFastlink
SerDes

CSR

pulse_settings
interpolation_rate0

fft0_shiftmask
stft_duc0_f

pulsegen_busy
...

FFT_0

FFT_1

Signal
Processing

...

RAM
access
control

Fastlink

Address
decoder

Figure 3.14: Integration Overview. Several gateware (orange) modules on
Kasli relay the data from the Kernel CPU (purple) to the Fastlink
interface. On the Phaser side, the data is decoded and the
specified functions are executed by various gateware modules.

drives the physical Low Voltage Differential Signaling (LVDS) pairs and provides
the deserialized data frames to the rest of the gateware.

A data frame consists of various fields and carries different data formats depending
on the Phaser configuration. When Phaser is in “classic” mode, a frame transfers
16 complex, 14 bit, real/imaginary data samples in addition to the frame header.
If specified by the header type field in the frame header, the frame is interpreted as
an FFT frame and takes the data format shown in Figure 3.15. The other header
fields contain CSR address and data, as well as a Wite Enable (WE) bit. The
bus master in the Fastlink decoder on Phaser then writes and reads the respective
CSRs. The body of an FFT frame consists of one FFT identifier (ID) field, a base
coefficient address and 13 FFT coefficients. The FFT loader uses the FFT ID to
address the various FFT cores in the STFT pulse generator. FFT RAM access
is managed using the FFT base-address. The 13 frame coefficients are written to

54

3.4 ARTIQ integration

consecutive RAM locations starting at the base address. This allows for coefficients
at specific locations to be altered without having to write the whole coefficient
RAM while simultaneously maximizing throughput by utilizing the whole frame
body.

0 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 3 2 1 0 15 14 1 0 15 14 1 0

Address

Body

31 30 1 0 31 30 1 0

Header

WE Data Type FFT ID
Base-

Address Coefficient 0 Coefficient 12

Figure 3.15: Fastlink Frame Dataformat

Inside the Phaser PHY on the Kasli side, a similar SerDes serializes the frames
and receives the readback CSR data from Phaser. The frames are assembled in
staging areas for the header and body. The staged header is always transmitted
onto the next frame. Transmission of the staged FFT data is evoked by setting the
FFT frame flag in the Phaser PHY. This causes the PHY to suspend the “classic”
data frames and send the staged FFT frame instead, setting the header type field
to tell Phaser the frame type.

As mentioned in 2.3, the CPU interacts with the timing-critical hardware via the
RTIO system through the Scalable Event Dispatcher (SED). The SED has several
rtlink (real-time link) connections to the PHY so it can write the various staging
areas and control the “classic” gateware. Using the main SoC wishbone bus, the
CPU can schedule the rtlink transactions. The transactions are abstracted into the
driver API functions running on the kernel CPU. As described in 3.2.3, the API
provides all of the functionality to stage coefficients, set interpolation rates, DUC
frequencies, pulse settings, etc.

As also mentioned in 3.2.3, the pulse trigger flag must be set in accordance to the
frame timing to achieve deterministic pulse emission. This is because the flag would
be staged for a nondeterministic time in the header staging area. To synchronize

55

3 STFT Pulse Generator

the frames with the pulse trigger, a CSR read from Phaser is performed first and
the exact frame timing is recorded. The SED can then be configured to schedule
the pulse trigger staging transaction an exact integer multiple of the frame-time
later. This way, the time from the deterministic SED transaction to the actual
pulse emission on Phaser will be deterministic as well. This is possible because the
gateware on Kasli and Phaser is deterministic and the Fastlink interface is custom
developed to feature deterministic latency.

3.5 Testing

Since all of the developed systems in this work reside in gate- and software, their
performance is deterministic which makes a full characterization of the output
redundant11. Equivalence of the gateware simulation with the numerical models
was continuously checked during development and realistic outputs at various stages
of the real FPGA gateware verified.

Checking all of the infrastructure for ARTIQ integration is more challenging, since
the interaction of the various subsystems is relatively complex. Deterministic
timing was verified on an oscilloscope by emitting a signal se on another Sinara
module, which is known to be deterministic, and checking for the STFT pulse to
be emitted with a constant latency every time. A repeated mask test can be seen
in Figure 3.16 Other functionality like coefficient loading, change of settings or
repeated pulse emission was tested under various conditions. While some bugs
might still be present in corner-cases which have not been explored during testing,
the open development and direct user feedback via Github Issues can help to polish
the system. The output of a testpulse with many tones and different interpolation
rates is shown in Figure 3.17.

The system was originally intended to be tested with an actual ion trap similar to
the one in Figure 1.2 at the PTB Braunschweig. Unfortunately the global Covid-19
pandemic prohibits the realization of an entangling experiment with the STFT
pulse generator and the Phaser hardware at the current time.
11This is of cause not true for the data converters and analog components which are not part of

this work.

56

3.5 Testing

Figure 3.16: STFT pulse generator timing test. The oscilloscope is triggered
on the yellow TTL pulse and checks if the purple STFT pulse
falls within the configured mask. The pulse is configured to be
a single frequency, shaped by a Hann window. No timing errors
are reported after 1400 tries.

57

3 STFT Pulse Generator

Figure 3.17: STFT pulse generator output on a spectrum analyzer. Three sets
of many tones are individually offset from the 200MHz DAC DDS
frequency and then mixed onto a 1GHz carrier. The different
tone spacings and spectral structure reflect the interpolation
rate and FFT coefficients provided via the ARTIQ interface.

58

4 Conclusion and Outlook

This thesis presented the development and integration of the STFT pulse generator.
Several DSP gateware modules were developed and sufficient performance was
achieved. Integration into the ARTIQ framework was accomplished and function-
ality verified. While there is currently no experimental validation in an actual
trapped ion experiment, QUARTIQ intends to eventually upstream the system
into the main Phaser and ARTIQ distributions, making it available to a growing
number of quantum experimentalists using ARTIQ.

Even though the current configuration of the STFT pulse generator is capable
of producing very complex pulses, future developments in trapped ion quantum
gates might require even more tones or more individual bands. Other schemes like
dynamical decoupling [Ber+12] might need continuous control over the qubit state,
coherently transitioning into the gatepulse. Another future requirement might
be to additionally chirp some of the frequency bands during the pulse. Since the
gateware is developed in a very generic way using MiGen, many of these demands
can be incorporated with relative ease.

Quantum information processing with trapped ions is still in a very early state.
While extreme conditions and control are necessary to maintain quantum coherence,
other technologies such as wireless communications have demonstrated exponential
improvements with rising engineering efforts. Just like in many current technologies,
signal processing will be an integral part of scaling up trapped ion quantum
computers in the near future.

59

A API Documentation

61

Docs » Core drivers reference

Phaser Short-Time Fourier-Transform (STFT) Pulse Generator.

Synthesizer for complex, high resolu�on pulses.

3 sets of 1024 tones with customizable tone-spacing can be placed in a 400MHz band. For
Phaser Upconverter, this window can itself be placed somewhere within [-400,400]MHz
from the $[0.3,4.8]$GHz carrier. The pulse can be windowed in �me by a narrow-band
window specified using 1024 � parameters and an interpola�on rate and emi�ed with
determinis�c latency.

Architecture:

One 1024 point radix2 � with variable shi� schedule allowing for maximized SNR in
different condi�ons.

Max rate-change = 1024
Possible rate-changes: 2, 4, 8, 12, 16, 20, ...
Image rejec�on > 89.5 dB in all condi�ons
Passband droop < 10%/0.9dB (can be compensated for in � coefficients)
Cutoff at 80% input nyquist (meaning the highest 10% of posi�ve and nega�ve �
coefficients cannot be used)

Same as in “classic” phaser mode
mHz resolu�on
SNR > 100dB

Window specified using another 1024 point � (however less tones can be used eg. only
3 for a hann window)
Another interpolator with the same specs but a maximum rate-change of 8192
Pulse emission can be triggered determinis�cally with single cycle (4ns) precision

Each � can be loaded/cleared/(re-)started individually

class artiq.coredevice.phaser.PhaserPulsegen(phaser) [source]

Three branches, each containing:

Two (real/imaginary signal part) variable rate interpolators:

One complex upconverter:

Window/shaper path:

API:

All interpolator rates can be changed individually
Pulse can be triggered either by sending a start frame from Kasli or as soon as an �
computa�on is done
Windower/shaper can be bypassed so there is a con�nuous s�t output
Channel 1 can be switched from phaser “classic” to s�t pulsegen on the fly (Ch.0 is always
Ch.0 of phaser “classic”)

 Note

There are a number of pi�alls in configuring the pulsegen. Coefficients, shi� schedules,
interpola�on rates and upconverter frequencies have to be such that no overflows or
aliasing occur in the signal processing. High distor�on in the output is usually a sign of
overflow, while flipped/misplaced spectral components arise from aliasing.

Check if in � computa�on. UNTESTED

Returns: 1 if busy and 0 if not.

Check if pulsegen is currently emi�ng a pulse. UNTESTED

Returns: 1 if busy and 0 if not.

Sets all coefficients on phaser to zero.

Parameters: id – �/branch iden�fier

Clear the frame staging area in the phy.

Performs a Phaser register read and records the exact frame �ming in self.frame_tstamp.
For determinis�c �ming a pulse has to be triggered an integer mul�ple of self.�rame later.

check_fft_busy() → numpy.int32 [source]

check_pulsegen_busy() → numpy.int32 [source]

clear_full_coef(id) [source]

clear_staging_area() [source]

get_frame_timestamp() [source]

send_coef(id, adr, real, imag) [source]

Send a set (max. nr_coef_per_frame) of consecu�ve � coefficients to phaser star�ng at
adress adr.

Parameters: id – �/branch iden�fier
adr – frame � mem base address
real – real part coefficient list
imag – imaginary part list

Send out an FFT frame with the staged data next.

Sends a full � coefficient set to phaser.

Parameters: id – �/branch iden�fier
real – real coefficient data array
imag – imag coefficient data array

Set the digital upconverter (DUC) and interpolator configura�on.

Parameters: id – �/branch iden�fier
clr – Keep the phase accumulator cleared (persistent)
clr_once – Clear the phase accumulator for one cycle
select – Select the data to send to the DAC (0: DUC data, 1: test data, other
values: reserved)

Set the DUC frequency in SI units.

Parameters: id – �/branch iden�fier
frequency – DUC frequency in Hz (passband from -200 MHz to 200 MHz,
wrapping around at +- 250 MHz)

Set the DUC frequency.

send_frame() [source]

send_full_coef(id, real, imag) [source]

set_duc_cfg(id, clr=0, clr_once=0, select=0) [source]

set_duc_frequency(id, frequency) [source]

set_duc_frequency_mu(id, �w) [source]

Parameters: id – �/branch iden�fier
�w – DUC frequency tuning word (32 bit)

Set the DUC phase in SI units.

Parameters: id – �/branch iden�fier
phase – DUC phase in turns

Set the DUC phase offset.

Parameters: id – �/branch iden�fier
pow – DUC phase offset word (16 bit)

Set the interpola�on rate.

Parameters: id – �/branch iden�fier
rate – interpola�on rate (16 bit)

Set the number of � repeats.

Parameters: rep – nr repe��ons (16 bit)

Write to pulsese�ngs register.

Parameters: disable_window – disables the “shaper” branch
gated_output – enables the gated shaper

Set the � shi�mask register.

set_duc_phase(id, phase) [source]

set_duc_phase_mu(id, pow) [source]

set_interpolation_rate(id, rate) [source]

set_nr_repeats(rep) [source]

set_pulsesettings(disable_window=1, gated_output=0) [source]

set_shiftmask(id, mask) [source]

Parameters: id – �/branch iden�fier
mask – shi�mask (16 bit)

Write � memory address of a frame into staging area.

Parameters: id – �/branch iden�fier
adr – frame � mem base address

Write i/q data in staging frame loca�on.

Parameters: pos – frame loac�on
r – real data
i – imag data

Start the � computa�on.

Parameters: id – �/branch iden�fier

Sets the pulsegen trigger flag. A pulse will be emi�ed as soon as the � computa�on is
finished.

stage_coef_adr(id, adr) [source]

stage_coef_data(pos, r, i) [source]

start_fft(id) [source]

trigger() [source]

List of Figures

1.1 Exemplary quantum circuit[yao] that generates a highly entangled
state between 4 qubits (before the measurement). After state prepa-
ration on the very left, single and two qubit gates are applied,
followed by a measurement at the end which reveals the final quan-
tum state. In this circuit the qubits will have a 50/50 chance to all
be 1 or all be 0, an outcome not possible with classical logic. 8

1.2 Ion trap fabricated at the “Physikalisch-Technische Bundesanstalt”
(PTB) Braunschweig[Bra]. The inset shows arrays of fluorescing
beryllium ions. 10

1.3 Exemplary ion mode spectrum[Cal]. The symmetrical structure of
the red (left) and blue (right) sideband is due to various vibrational
modes in the ion crystal. The modes are named by their movement
pattern like Center Of Mass (COM) where the ions all move back
and fourth in unison. 12

1.4 PTB Hardware for Mølmer-Sørenson microwave gates. 14

2.1 An image of a quantum laboratory with several instrumentation
devices annotated[M-Lb]. 15

2.2 A selection of Sinara hardware modules[M-Ld]. In the standard
configuration the modules are mounted in a Eurocard 3U chassis. . 17

2.3 The ARTIQ architecture spans several devices and abstraction layers.
Shown in blue are high level software functions running on the host
PC. Purple are low level software functions on the Kasli FPGA.
Gateware is shown in orange and hardware is depicted in green. The
unannotated arrows represent various interfaces, communication or
logical connections. 20

3.1 Phaser[Kas] PCB with the main ICs annotated. 24
3.2 STFT pulse generator Block-Diagram 26

67

List of Figures

3.3 9 FFT computation scenarios for the developed core. For each
scenario an ideal 1024 point FFT of the time-domain output is
depicted. The y-axis is the spectral magnitude in dB relative to a
Full-Scale sinusoid (dBFS) and the x-axis are the FFT bins. For
each scenario additional information is given. Signal level refers to
the magnitude of the strongest signal bin. The SNR is calculated
as follows: Signal power is defined as the ideal signal power output
by an ideal FFT (scaled to be equivalent to the core output). The
error signal is determined by subtracting the ideal signal from the
FFT core output. The noise power is defined to be the power of this
error signal, with the SNR being the ratio of the two terms. The
SFDR is simply given as the difference of the highest signal and the
highest noise bin. Since 3.3h is not computed by the actual FFT
core, it is plotted in a different color. 35

3.4 FFT Block-Diagram . 36

3.5 Butterfly Signal-Flow and Datapath. The dashed lines in the dat-
apath diagram illustrate register stages in the dataflow. The blue
boxes signify the underlying DSP block actualization. 38

3.6 Simplified 8 point FFT memory banking scheme. The memory
banks are illustrated with different colors and the respective entry
address is shown. RAM1 is shown in orange, RAM2a in purple and
RAM2b in blue. Using this scheme, neither the butterfly inputs nor
the outputs ever access the same memory bank. 40

3.7 Frequency magnitude (left) and impulse response (right) for the
three interpolator filters. Relevant frequency bands are highlighted
in each frequency response. The CIC response is plotted with an
exemplary rate-change of RCIC = 6. 43

3.8 Composite frequency responses for various interpolator configura-
tions. The worst case image for Rcomp = 8 is highlighted. As Rcomp

increases, the images are suppressed further. 44

3.9 CIC passband droop for various rate-changes RCIC . As the normal-
ized angular frequency is different in every case, the attenuation is
plotted over a frequency relative to RCIC . The relative passband
width is constant for all rates. 45

3.10 Signal flow of the multipexed DSP architecture. Depending on the
control signals different filters are realized. 47

3.11 Three iterations of the HBF topology. 49

68

List of Figures

3.12 Scatter plot of 105 equidistant output frequencies of the DDS with
a 500MSps sample rate. Evaluating the output SNR and SFDR at
more points could lead to slightly lower values for their respective
worst cases. 52

3.13 Simplified DDS Block-Diagram. Relevant signal widths are marked. 53
3.14 Integration Overview. Several gateware (orange) modules on Kasli

relay the data from the Kernel CPU (purple) to the Fastlink in-
terface. On the Phaser side, the data is decoded and the specified
functions are executed by various gateware modules. 54

3.15 Fastlink Frame Dataformat . 55
3.16 STFT pulse generator timing test. The oscilloscope is triggered on

the yellow TTL pulse and checks if the purple STFT pulse falls
within the configured mask. The pulse is configured to be a single
frequency, shaped by a Hann window. No timing errors are reported
after 1400 tries. 57

3.17 STFT pulse generator output on a spectrum analyzer. Three sets
of many tones are individually offset from the 200MHz DAC DDS
frequency and then mixed onto a 1GHz carrier. The different tone
spacings and spectral structure reflect the interpolation rate and
FFT coefficients provided via the ARTIQ interface. 58

69

List of Tables

3.1 STFT Pusegenerator Parameters 27
3.2 Specifications . 31

71

Bibliography

[15] DAC34H84 Quad-Channel, 16-Bit, 1.25 GSPS Digital-to-Analog Con-
verter (DAC). SLAS751D. Texas Instruments, 2015. url: https://
www.ti.com/lit/ds/slas751d/slas751d.pdf?ts=1613054873313&
ref_url=https%253A%252F%252Fwww.google.com%252F.

[16] TRF372017 Integrated IQ Modulator PLL/VCO. SLWS224E. Texas
Instruments, 2016. url: https://www.ti.com/lit/ds/symlink/
trf372017.pdf?ts=1613027442658&ref_url=https%253A%252F%
252Fwww.ti.com%252Fproduct%252FTRF372017.

[18] 7 Series DSP48E1 Slice User Guide. UG479 (v1.10). Xilinx, 2018. url:
https://www.xilinx.com/support/documentation/user_guides/
ug479_7Series_DSP48E1.pdf.

[19] Koch group - Quantum dynamics & control. 2019. url: https://
www.physik.fu-berlin.de/en/einrichtungen/ag/ag-koch/index.
html.

[20] 7 Series FPGAs Data Sheet: Overview. v2.6.1. Xilinx, 2020. url:
https://www.xilinx.com/support/documentation/data_sheets/
ds180_7Series_Overview.pdf.

[BB20] Charles H Bennett and Gilles Brassard. “Quantum cryptography: Pub-
lic key distribution and coin tossing.” In: arXiv preprint arXiv:2003.06557
(2020).

[Ben+93] Charles H Bennett et al. “Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels.” In: Physical
review letters 70.13 (1993), p. 1895.

[Ber+12] A Bermudez et al. “Robust trapped-ion quantum logic gates by con-
tinuous dynamical decoupling.” In: Physical Review A 85.4 (2012),
p. 040302.

[Bow+13] R Bowler et al. “Arbitrary waveform generator for quantum information
processing with trapped ions.” In: Review of Scientific Instruments
84.3 (2013), p. 033108.

73

https://www.ti.com/lit/ds/slas751d/slas751d.pdf?ts=1613054873313&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/slas751d/slas751d.pdf?ts=1613054873313&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/slas751d/slas751d.pdf?ts=1613054873313&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/trf372017.pdf?ts=1613027442658&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTRF372017
https://www.ti.com/lit/ds/symlink/trf372017.pdf?ts=1613027442658&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTRF372017
https://www.ti.com/lit/ds/symlink/trf372017.pdf?ts=1613027442658&ref_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FTRF372017
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-koch/index.html
https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-koch/index.html
https://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-koch/index.html
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

Bibliography

[Bra] PTB Braunschweig. Mit Mikrowellen zum Quantencomputer. url: www.
uni-hannover.de/de/universitaet/aktuelles/presseinformationen/
detail/news/mit-mikrowellen-zum-quantencomputer/.

[Bun20] Bundesfinanzministerium. Eckpunkte des Konjunkturpaketes. 2020.
url: https://www.bundesfinanzministerium.de/Content/DE/
Standardartikel/Themen/Schlaglichter/Konjunkturpaket/2020-
06-03-eckpunktepapier.pdf?__blob=publicationFile&v=12.

[BV97] Ethan Bernstein and Umesh Vazirani. “Quantum complexity theory.”
In: SIAM Journal on computing 26.5 (1997), pp. 1411–1473.

[Cal] Berkeley University of California. Ion trap quantum processor. url:
http://research.physics.berkeley.edu/haeffner/teaching/
exp-quant-info/Ion-QC2.pdf.

[CN08] Wei-Hsin Chang and Truong Q Nguyen. “On the fixed-point accu-
racy analysis of FFT algorithms.” In: IEEE Transactions on Signal
Processing 56.10 (2008), pp. 4673–4682.

[CY02] SC Chan and KS Yeung. “On the design and multiplier-less realiza-
tion of digital IF for software radio receivers with prescribed output
accuracy.” In: 2002 14th International Conference on Digital Signal
Processing Proceedings. DSP 2002 (Cat. No. 02TH8628). Vol. 1. IEEE.
2002, pp. 277–280.

[CZ95] Juan I Cirac and Peter Zoller. “Quantum computations with cold
trapped ions.” In: Physical review letters 74.20 (1995), p. 4091.

[Deu85] David Deutsch. “Quantum theory, the Church–Turing principle and
the universal quantum computer.” In: Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences 400.1818 (1985),
pp. 97–117.

[Fey82] Richard P Feynman. “Simulating physics with computers.” In: Int. J.
Theor. Phys 21.6/7 (1982).

[Fey86] Richard P Feynman. “Quantum mechanical computers.” In: Founda-
tions of physics 16.6 (1986), pp. 507–531.

[Gae+16] John P Gaebler et al. “High-fidelity universal gate set for be 9+ ion
qubits.” In: Physical review letters 117.6 (2016), p. 060505.

[Gmb21] VDI Technologiezentrum GmbH. Roadmap Quantencomputing. 2021.
url: https://www.quantentechnologien.de/artikel/roadmap-
quantencomputing-uebergeben.html.

74

www.uni-hannover.de/de/universitaet/aktuelles/presseinformationen/detail/news/mit-mikrowellen-zum-quantencomputer/
www.uni-hannover.de/de/universitaet/aktuelles/presseinformationen/detail/news/mit-mikrowellen-zum-quantencomputer/
www.uni-hannover.de/de/universitaet/aktuelles/presseinformationen/detail/news/mit-mikrowellen-zum-quantencomputer/
https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Schlaglichter/Konjunkturpaket/2020-06-03-eckpunktepapier.pdf?__blob=publicationFile&v=12
https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Schlaglichter/Konjunkturpaket/2020-06-03-eckpunktepapier.pdf?__blob=publicationFile&v=12
https://www.bundesfinanzministerium.de/Content/DE/Standardartikel/Themen/Schlaglichter/Konjunkturpaket/2020-06-03-eckpunktepapier.pdf?__blob=publicationFile&v=12
http://research.physics.berkeley.edu/haeffner/teaching/exp-quant-info/Ion-QC2.pdf
http://research.physics.berkeley.edu/haeffner/teaching/exp-quant-info/Ion-QC2.pdf
https://www.quantentechnologien.de/artikel/roadmap-quantencomputing-uebergeben.html
https://www.quantentechnologien.de/artikel/roadmap-quantencomputing-uebergeben.html

Bibliography

[Göc11] Heinz G Göckler. “Most efficient digital filter structures: The potential
of halfband filters in digital signal processing.” In: Applications of
Digital Signal Processing. InTech, 2011, p. 96.

[Gro96] Lov K Grover. “A fast quantum mechanical algorithm for database
search.” In: Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing. 1996, pp. 212–219.

[Hah19] M Sc Henning Hahn. “Two-qubit microwave quantum logic gate with
9 Be ions in scalable surface-electrode ion traps.” In: (2019).

[Kas] Greg Kasprowicz. Phaser Sinara Hardware Repository. url: https:
//github.com/sinara-hw/Phaser/wiki.

[Ker+19] Florent Kermarrec et al. “LiteX: an open-source SoC builder and
library based on Migen Python DSL.” In: OSDA 2019, colocated with
DATE 2019 Design Automation and Test in Europe. 2019.

[Lia+17] Sheng-Kai Liao et al. “Satellite-to-ground quantum key distribution.”
In: Nature 549.7670 (2017), pp. 43–47.

[M-La] M-Labs. ARTIQ Documentation. ARTIQ-5. M-Labs. url: https://m-
labs.hk/artiq/manual/.

[M-Lb] M-Labs. Experiment Control. url: https://m-labs.hk/experiment-
control/artiq/.

[M-Lc] M-Labs. MiGen Documentation. M-Labs. url: https://m-labs.hk/
migen/manual/introduction.html.

[M-Ld] M-Labs. Sinara Core. url: https : / / m - labs . hk / experiment -
control/sinara-core/.

[Ma97] Yutai Ma. “An accurate error analysis model for fast Fourier transform.”
In: IEEE transactions on signal processing 45.6 (1997), pp. 1641–1645.

[Org07] Reinhold Orglmeister. Signalverarbeitung. Vorlesungsskript. 2007. url:
http://www.emsp.tu-berlin.de.

[Pre18] John Preskill. “Simulating quantum field theory with a quantum com-
puter.” In: arXiv preprint arXiv:1811.10085 (2018).

[Ric+15] Stephen Richardson et al. “Building conflict-free FFT schedules.” In:
IEEE Transactions on Circuits and Systems I: Regular Papers 62.4
(2015), pp. 1146–1155.

[Sha+20] Yotam Shapira et al. “Theory of robust multiqubit nonadiabatic gates
for trapped ions.” In: Physical Review A 101.3 (2020), p. 032330.

75

https://github.com/sinara-hw/Phaser/wiki
https://github.com/sinara-hw/Phaser/wiki
https://m-labs.hk/artiq/manual/
https://m-labs.hk/artiq/manual/
https://m-labs.hk/experiment-control/artiq/
https://m-labs.hk/experiment-control/artiq/
https://m-labs.hk/migen/manual/introduction.html
https://m-labs.hk/migen/manual/introduction.html
https://m-labs.hk/experiment-control/sinara-core/
https://m-labs.hk/experiment-control/sinara-core/
http://www.emsp.tu-berlin.de

Bibliography

[Sho99] Peter W Shor. “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer.” In: SIAM review
41.2 (1999), pp. 303–332.

[SM99] Anders Sørensen and Klaus Mølmer. “Quantum computation with ions
in thermal motion.” In: Physical review letters 82.9 (1999), p. 1971.

[Wan+17] Ye Wang et al. “Single-qubit quantum memory exceeding ten-minute
coherence time.” In: Nature Photonics 11.10 (2017), pp. 646–650.

[yao] yaoquantum. Prepare Greenberger–Horne–Zeilinger state with Quantum
Circuit. url: https://docs.yaoquantum.org/v0.1/tutorial/GHZ/.

[Zar+19] G Zarantonello et al. “Robust and resource-efficient microwave near-
field entangling be+ 9 gate.” In: Physical review letters 123.26 (2019),
p. 260503.

76

https://docs.yaoquantum.org/v0.1/tutorial/GHZ/

	Abbreviations
	Abstract
	Zusammenfassung
	1 Quantum Information Processing
	1.1 Introduction
	1.2 Quantum Logic
	1.3 Trapped Ions
	1.4 Mølmer-Sørenson Gate
	1.5 Existing Hardware Approaches

	2 ARTIQ Framework
	2.1 Instrumentation for Quantum Physics
	2.2 Sinara
	2.3 ARTIQ Overview
	2.4 Development Tools

	3 STFT Pulse Generator
	3.1 Phaser hardware
	3.2 Description
	3.2.1 Abstract
	3.2.2 Functional
	3.2.3 Interface
	3.2.4 Practical Considerations
	3.2.5 Specifications

	3.3 Signal Processing
	3.3.1 FFT
	3.3.2 Interpolator
	3.3.3 Upconverter

	3.4 ARTIQ integration
	3.5 Testing

	4 Conclusion and Outlook
	A API Documentation
	List of Figures
	List of Tables
	Bibliography

